Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по статистике (1).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
284.27 Кб
Скачать

16. Сущность средних величин и правила их применения

Средняя величина – обобщающая количественная характеристика признака в статистической совокупности в конкретных условиях места и времени.

Сущность средней величины состоит в том, что через единичное и случайное выявляется общее и необходимое, выявляется тенденция и закономерность в развитии массовых явлений. Средняя отображает что-то общее, которое складывается в определенном единичном объекте. В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Условия применения средних величин:

• качественная однородность изучаемой совокупности;

• совокупность должна включать большое число факторов (событий), т.к. только в ней может проявиться закон больших чисел, обеспечивающий устойчивость средних.

Средние величины применяются: • для оценки достигнутого уровня изучаемого показателя, при анализе и планировании производственно-хозяйственной деятельности предприятий (объединений), фирм, банков и других хозяйственных единиц; • при выявлении взаимосвязей явлений, при прогнозировании, а также расчете нормативов.

Расчет средних величин необходим для:

• характеристики типичного уровня по данной совокупности;

• сравнения типичных уровней по 2 и более совокупностям;

• как нормы при установлении плановых заданий, уровней договорных обязательств.

В зависимости от характера первичных данных, области применения и способа расчета в статистике различают следующие основные виды средних: средняя арифметическая, средняя гармоническая, средняя геометрическая и средняя квадратическая.

17. Средняя арифметическая величина. Ее свойства и способы вычисления

Средняя арифметическая – такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным (это среднее слагаемое). Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов (х) и частот (f).

Средняя арифметическая бывает простая и взвешенная.

Средняя арифметическая простая применяется, если отдельное значение признака встречается 1 раз или одинаковое число раз. Она равна сумме отдельных значений признака (хi), деленной на число этих значений (n): .

Средняя арифметическая взвешенная используется если значения признака (варианты) встречаются неодинаковое число раз, то: , где хi – варианты значений признака, fi – частота.

Основные свойства средней арифметической:

1. От уменьшения или увеличения частот каждого значения признака х в n раз величина средней арифметической не изменится. Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

4. Если х = с, где с – постоянная величина, то .

5. Сумма отклонений значений признака x от средней арифметической х равна нулю: