Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 3 Ионная проводим.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
540.16 Кб
Скачать

3.1.2 Дефекты по Шоттки

Дефекты по Шоттки - есть пустые узлы, образовавшиеся за счет диссоциации ионов и перехода их на поверхность тела эстафетным путем. В атомных кристаллах дефекты по Шоттки могут быть одинарными, в полярных (ионных) - двойными.

Рисунок 2

Поскольку при дефектообразовании не нарушается электронейтральность, то более вероятно образование парных дефектов по Шоттки, т.е. положительных и отрицательных вакансий в ионных кристаллах. Тем не менее, обычно рассматривают и концентрацию возможных одинарных дефектов по Шоттки, не касаясь вопроса о способе, с помощью которого в том или ином случае в атомных кристаллических телах сохраняется электронейтральность.

Для создания одинарного дефекта по Шоттки требуется затратить энергию Δ Eш, которая оказывается равной примерно половине полной энергии, необходимой для отрыва атома от кристалла.

Для создания парного дефекта по Шоттки требуется затратить энергию, которую будем обозначать через Δ Ep.

Не исключена возможность образования антишоттовских дефектов – лишних ионов в междоузлиях, внедрившихся с поверхности кристалла. Однако концентрация таких дефектов относительно мала.

Для расчета равновесной концентрации одинарных дефектов Шоттки обозначим через n1 – концентрацию дефектов Шоттки; ωш- число способов, с помощью которых n1 одинарных дефектов (вакансий) смогут разместиться в N узлах.

Число этих способов будет равно:

, ()

Изменение энтропии по сравнению с упорядоченным состоянием, при котором все ионы находятся в узлах с учетом () определяется выражением:

, (6)

Увеличение внутренней энергии единицы объема кристалла при переходе n ионов в междоузлия равно:

ΔU= ΔEшn (7) ,

Условию динамического равновесия процессов диссоциации и рекомбинации при заданной температуре соответствует минимум свободной энергии, значит, для равновесия имеем.

, (9)

Подставим полученные выражения () и () в ():

, ()

Продифференцируем полученное выражение и раскроем факториалы. При условии, что равновесная концентрация дефектов Шоттки намного меньше концентрации узлов решетки N>>n1 получим, что равновесная концентрация дефектов по Шоттки равна:

, ()

Расчет равновесной концентрации парных дефектов по Шоттки аналогичен. Для этого обозначим как и ранее через N концентрацию узлов определенного знака (например положительных), способных к диссоциации. Через N` - концентрацию узлов другого знака, так же способных к диссоциации (и переходу на поверхность).

Концентрация парных дефектов по Шоттки nр будет определяться ωр- число способов, с помощью которых nр парных дефектов (вакансий) смогут разместиться в N узлах и аналогично число способов ω′р, с помощью которых nр парных дефектов (вакансий) смогут разместиться в N` узлах:

, ()

, ()

Пользуясь методами расчета, используемыми ранее, можно подсчитать концентрацию парных дефектов:

, ()

, ()

, ()

Раскроем факториалы и проведем дифференцирование выражения () и получим формулу для расчета равновесной концентрации парных дефектов по Шоттки:

, ()

Легко видеть, что концентрация парных дефектов по Шоттки вычисляется подобно концентрации дефектов по Френкелю, отличие в величинах энергий образования дефектов ΔE и ΔEp , а также в величинах N1 – (концентрация междоузлий) и N` - (концентрация узлов, где размешаются ионы, противоположные по знаку, по сравнению с ионами в узлах N).

Отношение концентраций дефектов по Френкелю и Шоттки определяются в основном величинами их энергии образования дефектов ΔE, ΔEш или ΔEp. В большинстве случаев в реальных системах наблюдались преимущественно либо дефекты по Френкелю, либо парные дефекты по Шоттки.