
- •3. Типоразмеры нкт, основные параметры и сравнительная характеристика.
- •4. Нкт с внутренними покрытиями. Допустимая глубина спуска нкт с различными типами покрытий.
- •5. Устройство, принцип действия и основные параметры прямоточных задвижек типа змс.
- •6. Устройство, принцип действия и основные параметры прямоточных задвижек типа змад.
- •7. Классификация запорных устройств для нефтегазовой промышленности.
- •8. Устройство, принцип действия и основные параметры пробковых кранов типа кппс. Краны современных конструкций.
- •9, 10. Колонные головки типа окм, окк. Их устройство, основные параметры.
- •11. Манифольды фонтанных арматур. Их назначение и принцип действия.
- •12. Классификация фонтанных арматур. Назначение отдельных элементов. Основные параметры арматур.
- •13. Конструкции регулируемых и нерегулируемых дросселей.
- •14. Основные параметры, принцип действия и конструктивные особенности станков-качалок типа ск.
- •15. Устройство, принцип действия и основные параметры станков-качалок типа скд.
- •16. Параметрический ряд приводов штанговых глубинных насосов типа пшгн, их принцип действия и конструктивные особенности.
- •19. Балансирное уравновешивание шну.
- •20. Роторное уравновешивание шну.
- •21. Комбинированное уравновешивание шну.
- •22. Пневматическое уравновешивание шну.
- •23. Конструкция насосов типа нв1, их основные параметры и принцип действия.
- •24. Конструкция насосов типа нн1, их основные параметры и принцип действия.
- •25. Конструкция насосов типа нв2, их основные параметры и принцип действия.
- •26. Конструкция насосов типа нн2, их основные параметры и принцип действия.
- •27. Конструкция насосов типа нн, основные параметры и принцип действия.
- •28. Структурная схема установки погружного центробежного электронасоса. Назначение и принцип действия элементов установки.
- •29. Конструктивные особенности электродвигателя установки эцн, принцип действия, основные параметры.
- •30. Основные параметры гидрозащиты, ее конструктивные особенности и принцип действия.
- •31. Конструкция и назначение трубной головки фонтанной арматуры.
- •32. Конструкция фонтанной елки и ее назначение.
- •33. Конструкция погружного насоса установки эцн, его назначение и основные параметры.
- •34. Конструкция газового сепаратора и принцип его действия в установке эцн.
- •35. Выбор типоразмера канатной подвески устьевого штока и проверка его на прочность.
- •36. Кинематические показатели станков-качалок.
- •37. Нагрузки, действующие на нкт. Методика их расчета.
- •39. Определение диаметрального габарита насосного агрегата установки эцн.
- •40. Электродиафрагменные насосы. Их конструктивные особенности, принцип действия и основные параметры.
- •41. Электровинтовые насосы. Принцип действия, основные параметры и конструктивные особенности.
- •42. Конструкция насосов типа цнс, их назначение и основные параметры.
- •47. Виды технологий производства спо. Машинное и подготовительное время. Коэффициент использования мощности.
- •48. Влияние длины свечи на темп спо. Рациональное количество труб.
- •50. Устройство балочных элеваторов. Их техническая характеристика.
- •51. Устройство втулочных элеваторов, основные параметры.
- •52. Технические особенности одно- и двухпетельных конструкций штропов.
- •53. Классификация трубных элеваторов.
- •54. Механические ключи. Их конструктивные схемы и принцип работы, основные технические характеристики.
- •55. Типы механических трубных ключей. Их конструктивные схемы, основные технические характеристики. Способы монтажа.
- •56. Особенности работы штанговых ключей, их конструктивные схемы, техническая характеристика.
- •57. Спайдеры. Их назначение, принцип работы, техническая характеристика.
- •58. Автоматические спайдеры. Конструктивные схемы, принцип работы, техническая характеристика.
- •59. Механические спайдеры. Конструкция, принцип работы, техническая характеристика.
- •54. Комбинированные механизмы-автоматы. Принцип их создания и работы.
- •55. Автомат системы Молчанова. Устройство, принцип работы, техническая характеристика.
- •56. Универсальный автомат для ремонта скважин с эцн. Принцип его работы, устройство и основные параметры.
- •58. Подъемники для текущего ремонта скважин под давлением. Особенности конструкций, структура, принцип работы.
- •59. Кинематические схемы лебедок подъемника. Их достоинства и недостатки, сравнительная характеристика.
- •60. Оборудование для нагнетания жидкостей в пласт. Его структура, назначение и принцип работы.
- •61. Требования к качеству воды, закачиваемой в пласт.
- •62. Типовая схема водоснабжения системы поддержания давления. Назначение и взаимодействие в процессе работы ее элементов.
- •63. Принципиальная схема водозабора, его оборудование.
- •64. Схемы установок подготовки сточных вод. Состав оборудования, принцип работы.
- •65. Блочные кустовые насосные станции. Состав блоков, их назначение, принцип работы.
- •67. Оборудование для гидроразрыва пласта. Конструкция насосной установки ун-1-63070а, ее техническая характеристика.
- •69, 70. Системы сбора и подготовки нефти и газа. Их особенности и структура.
- •71. Классификация нефтегазовых сепараторов. Их сравнительная характеристика.
- •73. Устройство сепараторов типа нгс. Их основные параметры.
- •74. Принципиальная схема и принцип работы сепараторов типа убс.
- •75. Принципиальная схема и принцип работы сепараторов типа упс.
- •79. Понятие о коэффициенте использования мощности. Виды приводов подъемников их сравнительная характеристика.
- •80. Условия работы глубинно-насосных штанг. Приведенные напряжения для штанг.
- •44. Конструкция агрегата типа ар32, его назначение, основные параметры.
- •43. Конструкция подъемной установки упт1-50, его назначение, структурная схема и основные параметры.
3. Типоразмеры нкт, основные параметры и сравнительная характеристика.
Насосно-компрессорные трубы изготавливаются согласно ГОСТ 633-80, предусматривающему изготовление гладких труб и муфт к ним, труб с высаженными наружу концами (В) и муфт к ним, гладких высокогерметичных труб (НКМ) и муфт к ним, а также безмуфтовых труб (НКБ) с высаженными наружу концами. Гладкие трубы проще в изготовлении, но их концы ослаблены нарезанной на них резьбой. Трубы с высаженными наружу концами имеют одинаковую прочность по основному телу и у резьбы. Эти трубы называются равнопрочными. Внешний диаметр их муфты больше, чем у труб с гладкими концами. У НКТ гладких и с высаженными концами резьба с конусностью 1:16, закругленная, с углом профиля 60°. У труб НКМ и НКБ резьба также коническая, но с трапецеидальным профилем. Резьбовая часть труб с НКМ и НКБ имеет конический гладкий конец, входящий в конус муфтовой части резьбового соединения и создающий дополнительное уплотнение соединения. По массе труб допускается отклонение от + 6,5 до -3,5 % для исполнения труб А (более точное исполнение) и от + 8 до -6 % для исполнения труб Б (менее точное исполнение).
Внутренний диаметр НКТ проверяется шаблоном длиной 1250 мм с наружным диаметром на 2-2,9 мм меньше номинального внутреннего диаметра трубы (меньшее отклонение для труб небольшого диаметра). На толщину стенки установлен минусовый допуск в 12,5 % от толщины.
Трубы изготовляются из сталей следующих групп прочности: Д, К, Е, Л, М, Р.
Кроме того, НКТ изготавливаются из алюминиевого сплава марки Д16Т. Этот сплав имеет предел текучести около 300 МПа, предел выносливости 110 МПа. Относительная плотность сплава 2,72. Трубы, изготовленные из алюминиевого сплава, имеют значительно меньшую массу, чем стальные, а прочность их снижается меньше (в 1,25 раз по отношению к группе прочности стали Д, в 1,67 раз — к К и в 1,83 раз — к Е). Таким образом, колонны труб из алюминиевого сплава можно спускать глубже, или они будут иметь большой запас прочности при глубине спуска, одинаковой с глубиной спуска стальных труб.
Трубы из сплава Д16Т обладают и большей коррозионной стойкостью в сероводородсодержащих средах. Особенно повышается их коррозионная стойкость и износостойкость при толстослойном анодировании.
Наличие у колонн НКТ резьбовых соединений через каждые 8-10 м резко увеличивает трудоемкость работ на скважине при спуске и подъеме колонн труб.
В последние годы применяются так называемые безмуфтовые гибкие трубы длиной до 800, а в некоторых случаях 1200-1500 м. Эти трубы выпускаются с прокатного стана полной строительной длины без промежуточных соединений и сматываются в бухту. Они спускаются в скважину со специального агрегата, обычно смонтированного на большегрузной автомашине. На агрегате расположены барабан с намотанными трубами, привод барабана и выпрямляющий узел, располагаемый над скважиной.
4. Нкт с внутренними покрытиями. Допустимая глубина спуска нкт с различными типами покрытий.
В последнее время широко применяются НКТ, внутренняя поверхность которых покрыта стеклом, эпоксидными смолами. Менее распространено, но применяется эмалирование труб. Такие покрытия применяются для защиты от отложения парафина на трубах и защиты от коррозии внутренней поверхности труб. Кроме того, они снижают на 20-30 % гидравлические сопротивления потоку.
Покрытие стеклом обладает высокой теплостойкостью и достаточно прочно при небольших деформациях труб. На поверхности стекла не откладывается парафин. Однако покрытие стеклом имеет ряд недостатков. Один из них — образование микротрещин в стекле при покрытии им трубы. В результате образуются очаги коррозии металла и местного отложения парафина у трещин. В настоящее время отрабатывается технология покрытия, уменьшающая трещинообразование. Второй недостаток — разрушение стекла при деформации труб. Причиной этого служат различные модули упругости металла (0,21·106 МПа) и стекла (0,057·106 МПа). Вследствие этого при растяжении металла труб тонкому слою стекла передаются большие усилия, нарушающие его целостность. Это сказывается при больших глубинах подвески труб и при транспортировке их, когда трубы не предохранены от изгиба.
Расчеты показывают, что при наиболее прочных марках стекла допустимые нагрузки на трубы 735,5 мм равны примерно 200 кН. Это означает, что длина колонны от верхних остеклованных труб до нижней трубы ограничивается прочностью стеклянного покрытия. При спуске на НКТ скважинного центробежного насоса эта длина не должна превышать 1500-1700 м (запас прочности 1,3-1,5).
Покрытие труб эпоксидными смолами также хорошо защищает их от отложений парафина. Эпоксидные смолы эластичнее стекла, и при деформации труб смола не трескается. Но она имеет свои недостатки. Температура, при которой можно применять смолы, невысокая — не более 60 °С.
Покрытие труб стеклом и эпоксидной смолой рассматривается как эффективное средство борьбы с отложением парафина. То или иное покрытие необходимо выбирать в зависимости от условий эксплуатации.
В последние годы расширяется применение эмалированных труб. Они обладают наиболее прочным покрытием (значительно прочнее стекла), высокой температуростойкостью, морозоустойчивостью и гладкой поверхностью, на которой парафин не откладывается. Для защиты НКТ от агрессивных сред трубы покрываются несколькими слоями эмали. Технология наложения эмали значительно сложнее технологии покрытия стеклом и эпоксидной смолой.
Общий недостаток покрытий — то, что место муфтового соединения труб остается незащищенным. В этом месте можно устанавливать эластичные проставки, перекрывающие незащищенное место, или протекторные кольца, потенциал материала которых таков, что кольца корродируют сами, защищая от коррозии близко расположенные участки трубы. Однако такие меры практикуются редко, так как они имеют крупные недостатки.