
- •Основы теории вероятностей и математической статистики
- •1) Случа́йное собы́тие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.
- •2) Теоремы сложения и умножения вероятностей
- •Теорема сложения вероятностей
- •Свойства функции распределения:
- •Пример 1
- •Пример 2
- •Пример 3.4
- •Пример 1
- •Пример 2
- •Пример 1
- •Пример 2
- •9) Всякое каким-то образом выделенное множество объектов, которые могут отличаться друг от друга значением некоторой определенной характеристики, называется генеральной совокупностью.
- •Характеристики выборки:
- •Характеристики выборки:
Основы теории вероятностей и математической статистики
1) Случа́йное собы́тие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.
Случайное
событие, которое никогда не реализуется
в результате случайного эксперимента,
называется невозможным и
обозначается символом
.
Случайное событие, которое всегда
реализуется в результате случайного
эксперимента, называется достоверным и
обозначается символом
.
Вероя́тность — численная мера возможности наступления некоторого события.
Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными.
Два события А и В называются независимыми, если появление одного из них не изменяет вероятности появления другого.
События А и В называются зависимыми, если появление одного из них изменяет вероятность появления другого.
2) Теоремы сложения и умножения вероятностей
Суммой двух событий А и В называется событие С, состоящее в появлении хотя бы одного из событий А или В.
Теорема сложения вероятностей
Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий:
Р (А + В) = Р (А) + Р (В).
В случае, когда события А и В совместны, вер-ть их суммы выражается формулой
Р (А +В) = Р (А) + Р (В) – Р (АВ),
где АВ – произведение событий А и В.
Два события называются зависимыми, если вероятность одного из них зависит от наступления или не наступления другого. в случае зависимых событий вводится понятие условной вероятности события.
Условной вероятностью Р(А/В) события А называется вероятность события А, вычисленная при условии, что событие В произошло. Аналогично через Р(В/А) обозначается условная вероятность события В при условии, что событие А наступило.
Произведением двух событий А и В называется событие С, состоящее в совместном появлении события А и события В.
Теорема умножения вероятностей
Вероятность произведения двух событий равна вер-ти одного из них, умноженной на условную вероятность другого при наличии первого:
Р (АВ) = Р(А) · Р(В/А), или Р (АВ) = Р(В) · Р(А/В).
Следствие. Вероятность совместного наступления двух независимых событий А и В равна произведению вероятностей этих событий:
Р (АВ) = Р(А) · Р(В).
Следствие. При производимых n одинаковых независимых испытаниях, в каждом из которых событияА появляется с вероятностью р, вероятность появления события А хотя бы один раз равна 1 - (1 - р)n
Условная вероятность — вероятность одного события при условии, что другое событие уже произошло.
3) Определение: Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.
Различают два вида случайных величин: дискретные и непрерывные.
Определение: Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.
Другими словами, возможные значения дискретной случайной величину можно перенумеровать.
Описать случайную величину можно с помощью ее закона распределения.
Определение: Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.
Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т.е.
-
x
x1
x2
х3
…
хn
p
р1
р2
р3
...
рn
где р1+ р2+…+ рn=1
Такая таблица называется рядом распределения дискретной случайной величины.
Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.
Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).
рис.1
Закон распределения дискретной случайной величины Х может быть также задан аналитически (в виде формулы):
P(X=xi)=φ(xi),i =1,2,3…n
Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:
М(Х)=∑ xiрi= x1р1 + x2р2+…+ xnрn
Математическое ожидание служит характеристикой среднего значения случайной величины.
Свойства математического ожидания:
1)M(C)=C, где С-постоянная величина;
2)М(С•Х)=С•М(Х),
3)М(Х±Y)=М(Х) ±M(Y);
4)M(X•Y)=M(X) •M(Y), где X,Y- независимые случайные величины;
5)M(X±C)=M(X)±C, где С-постоянная величина;
Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия.
Определение: Дисперсией D(X) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:
D(X)=M(X-M(X))2
Свойства дисперсии:
1)D(C)=0, где С-постоянная величина;
2)D(X)>0, где Х- случайная величина;
3)D(C•X)=C2•D(X), где С-постоянная величина;
4)D(X+Y)=D(X)+D(Y), где X,Y- независимые случайные величины;
Для вычисления дисперсии часто бывает удобно пользоваться формулой:
D(X)=M(X2)-(M(X))2,
где М(Х)=∑ xi2рi= x12р1 + x22р2+…
Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).
Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:
4) Непрерывной называют величину, все возможные значения которой полностью заполняют конечный или бесконечный промежуток числовой оси.
Очевидно, число возможных значений непрерывной случайной величины бесконечно.
Непрерывную случайную величину можно задавать с помощью функции распределения.
Определение:
Функцией
распределения
непрерывной случайной величины Х
называется функция F(х),
определяющая для каждого значения х
R
вероятность того, что случайная величины Х в результате испытания примет значение, меньшее х:
F(x)=P(X<x),где х R
Функцию распределения иногда называют интегральной функцией распределения.