Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_teorii_veroyatnostey_i_matematicheskoy_s...docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
630.18 Кб
Скачать

Основы теории вероятностей и математической статистики

1) Случа́йное собы́тие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.

Случайное событие, которое никогда не реализуется в результате случайного эксперимента, называется невозможным и обозначается символом  . Случайное событие, которое всегда реализуется в результате случайного эксперимента, называется достоверным и обозначается символом  .

Вероя́тность — численная мера возможности наступления некоторого события.

Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными.

Два события А и В называются независимыми, если появление одного из них не изменяет вероятности появления другого.

События А и В называются зависимыми, если появление одного из них изменяет вероятность появления другого.

2) Теоремы сложения и умножения вероятностей

Суммой двух событий А и В называется событие С, состоящее в появлении хотя бы одного из событий А или В.

Теорема сложения вероятностей

Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий:

Р (А + В) = Р (А) + Р (В).

В случае, когда события А и В совместны, вер-ть их суммы выражается формулой

Р (А +В) = Р (А) + Р (В) – Р (АВ),

где АВ – произведение событий А и В.

Два события называются зависимыми, если вероятность одного из них зависит от наступления или не наступления другого. в случае зависимых событий вводится понятие условной вероятности события.

Условной вероятностью Р(А/В) события А называется вероятность события А, вычисленная при условии, что событие В произошло. Аналогично через Р(В/А) обозначается условная вероятность события В при условии, что событие А наступило.

Произведением двух событий А и В называется событие С, состоящее в совместном появлении события А и события В.

Теорема  умножения вероятностей

Вероятность произведения двух событий равна вер-ти одного из них, умноженной на условную вероятность другого при наличии первого:

Р (АВ) = Р(А) · Р(В/А), или Р (АВ) = Р(В) · Р(А/В).

Следствие. Вероятность совместного наступления двух независимых  событий А и В равна произведению вероятностей этих событий:

Р (АВ) = Р(А) · Р(В).

Следствие. При производимых n одинаковых независимых испытаниях, в каждом из которых событияА появляется с вероятностью р, вероятность появления события А хотя бы один раз равна 1 - (1 - р)n

Условная вероятность — вероятность одного события при условии, что другое событие уже произошло.

3) Определение: Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

Различают два вида случайных величин: дискретные и непрерывные.

Определение: Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

Описать случайную величину можно с помощью ее закона распределения.

Определение: Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т.е.

x

x1

x2

х3

хn

p

р1

р2

р3

...

рn

где р1+ р2+…+ рn=1

Такая таблица называется рядом распределения дискретной случайной величины.

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).

рис.1

Закон распределения дискретной случайной величины Х может быть также задан аналитически (в виде формулы):

P(X=xi)=φ(xi),i =1,2,3…n

Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

М(Х)=∑ xiрi= x1р1 + x2р2+…+ xnрn

Математическое ожидание служит характеристикой среднего значения случайной величины.

Свойства математического ожидания:

1)M(C)=C, где С-постоянная величина;

2)М(С•Х)=С•М(Х),

3)М(Х±Y)=М(Х) ±M(Y);

4)M(X•Y)=M(X) •M(Y), где X,Y- независимые случайные величины;

5)M(X±C)=M(X)±C, где С-постоянная величина;

Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия.

Определение: Дисперсией D(X) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X)=M(X-M(X))2

Свойства дисперсии:

1)D(C)=0, где С-постоянная величина;

2)D(X)>0, где Х- случайная величина;

3)D(C•X)=C2•D(X), где С-постоянная величина;

4)D(X+Y)=D(X)+D(Y), где X,Y- независимые случайные величины;

Для вычисления дисперсии часто бывает удобно пользоваться формулой:

D(X)=M(X2)-(M(X))2,

где М(Х)=∑ xi2рi= x12р1 + x22р2+…

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).

Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:

4) Непрерывной называют величину, все возможные значения которой полностью заполняют конечный или бесконечный промежуток числовой оси.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Непрерывную случайную величину можно задавать с помощью функции распределения.

Определение: Функцией распределения непрерывной случайной величины Х называется функция F(х), определяющая для каждого значения х R

вероятность того, что случайная величины Х в результате испытания примет значение, меньшее х:

F(x)=P(X<x),где х R

Функцию распределения иногда называют интегральной функцией распределения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]