
- •Водоотведение и очистка сточных вод
- •Мгсу Издательство Ассоциации строительных вузов Москва 2006
- •Предисловие
- •Глава 5; инж. Карпова н.Б. - глава 5.
- •Глава 5; инж. Кожевникова л.М. - глава 5.
- •Введение
- •Раздел I системы водоотведения Глава 1 общие сведения о системах водоотведения
- •1.1. Сточные воды и их краткая характеристика
- •1.2. Основные элементы водоотводящих систем
- •1.3. Системы водоотведения городов
- •1.5. Экологическая и технико-экономическая оценка систем водоотведения
- •1.6. Охрана поверхностных и подземных вод от загрязнения сточными водами
- •Глава 2
- •2.1. Трубопроводы и каналы
- •2.2. Особенности движения жидкости в водоотводящих сетях
- •2.3. Гидравлический расчет самотечных трубопроводов
- •2.4. Гидравлический расчет напорных трубопроводов
- •Раздел II водоотводящие сети Глава 3
- •3.1. Схемы водоотводящих сетей
- •3.2. Расчет и проектирование водоотводящих сетей
- •1. Общие коэффициенты неравномерности притока сточных вод допускается принимать при количестве производственных сточных вод, не превышающих 45 % общего расхода.
- •При промежуточном значении среднего расхода сточных вод общие коэффициенты неравномерности следует определять интерполяцией.
- •Для начальных участков сети, где средний расход менее 5 л/с действует правило для безрасчетных участков, на которых принимают минимально допустимые диаметры и уклоны труб (см. Табл. 2.2).
- •Определение расчетных расходов для отдельных участков сети по удельному расходу на 1 м длины трубопровода
- •3.3. Конструирование водоотводящих сетей
- •Глава 4 водоотводящие сети промышленных предприятий
- •4.1. Схемы водоотводящих сетей
- •4.3. Конструирование водоотводящих сетей
- •Загрязнений
- •Глава 5 водоотводящие сети атмосферных осадков (водостоки)
- •5.1. Формирование стока на городских территориях
- •Величины метеорологических параметров
- •5 .2. Схемы водоотводящих сетей
- •5.3. Расчет и проектирование водоотводящих сетей
- •16. Особенности конструирования водосточных сетей
- •Глава 6
- •6.1. Трубопроводы
- •6.2. Колодцы и камеры
- •6.4. Методы прокладки и реконструкции водоотводящих сетей
- •Раздел III перекачка сточных вод Глава 7 насосные станции
- •7.1. Оборудование насосных станций
- •7.2. Расчет и проектирование насосных станций и напорных водоводов
- •Р ис. 7.12. Принципиальная высотная схема расположения арр по отношению к подводящему каналу нс:
- •7.4. Конструирование насосных станций
- •Раздел IV очистка сточных вод
- •Глава 8
- •8.1. Формирование состава сточных вод
- •8.2. Санитарно-химические показатели загрязнения сточных вод
- •8.3. Влияние сточных вод на водоем
- •8.4. Условия сброса сточных вод в городскую водоотводящую сеть
- •8.5. Условия сброса сточных вод в водоем
- •8.6. Определение необходимой степени очистки сточных вод
- •Глава 9
- •9.1. Анализ санитарно-химических показателей состава сточных вод
- •9.2. Методы очистки сточных вод и обработки осадков
- •9.3. Разработка и обоснование технологических схем очистки сточных вод
- •9.4. Технологические схемы очистки сточных вод
- •Глава 10
- •10.1. Решетки
- •Ширина прозора, мм
- •Характеристика транспортеров
- •Характеристика щелевого сита
- •10.2. Песколовки
- •10.3. Отстойники
- •На радиальной ферме
- •Глава 11
- •Жирные кислоты и глицсрол
- •Масляная кислота ▲
- •11.2. Принципы очистки сточных вод в аэротенках и основные характеристики активного ила
- •11.3. Технологические схемы очистки сточных вод в аэротенках
- •11.4. Конструкции аэротенков
- •11.5. Системы аэрации иловых смесей в аэротенках
- •11.6. Принципы расчета аэротенков и систем аэрации
- •11.7. Основные направления интенсификации работы аэрационных сооружений
- •Р ис. 11.31. Схема работы аэротенка с удалением азота но двухиловой системе
- •11.8. Вторичные отстойники
- •Глава 12
- •12.2. Классификация биофильтров
- •12.4. Системы распределения сточных вод по поверхности биофильтров
- •12.5. Системы вентиляции биофильтров
- •12.6. Расчёт и проектирование биофильтров
- •Параметры для расчета капельных биофильтров
- •Параметры для расчета высоконагружаемых биофильтров
- •12.9. Комбинированные сооружения биологической очистки сточных вод
- •1 2.10. Методы интенсификации работы биофильтров
- •Глава 13 сооружения физико-химической очистки сточных вод
- •13Л. Область применения и классификация сооружений физико-химической очистки сточных вод
- •13.2. Очистка сточных вод флотацией
- •13.3. Очистка сточных вод коагулированием
- •13.4. Сорбционная очистка сточных вод
- •13.5. Очистка сточных вод озонированием
- •13.6. Конструирование сооружений физико-химической очистки сточных вод
- •Глава 14 глубокая очистка и обеззараживание сточных вод
- •14Л. Теоретические основы методов глубокой очистки и обеззараживания сточных вод
- •14.2. Методы глубокой очистки сточных вод от органических загрязнений и взвешенных веществ
- •14.3. Методы глубокой очистки сточных вод от биогенных элементов
- •14.4. Методы удаления из сточных вод отдельных компонентов
- •14.5. Методы обеззараживания сточных вод
- •14.6. Методы насыщения очищенных сточных вод кислородом
- •Раздел V обработка, обеззараживание и утилизация осадков сточных вод
- •Глава 15
- •15Л. Состав и свойства осадков сточных вод
- •15.3. Стабилизация осадков сточных вод и активного ила в анаэробных и аэробных условиях
- •1 5.4. Реагентная и биотермическая обработка осадков сточных вод
- •15.5. Обеззараживание осадков сточных вод
- •Глава 16
- •16.1. Песковые площадки
- •16.2. Иловые площадки и иловые пруды
- •16.3. Механическое обезвоживание осадков сточных вод
- •Эффективность задержания сухого вещества осадка и влажности кека при обезвоживании на центрифугах
- •16.4. Термическая сушка осадков сточных вод
- •16.5. Сжигание осадков сточных вод
- •Глава 17
- •17.1. Утилизация осадков бытовых сточных вод
- •17.2. Депонирование осадков сточных вод
- •Р ис. 17.2. Способы складирования осадков сточных вод:
- •Раздел VI общие компоновочные решения комплексов очистных сооружений
- •Глава 18
- •Проектирование водоотводящих систем и сооружений
- •18.1. Основные положения о проектно-изыскательских
- •18.2. Инженерные изыскания
- •18.3. Проектные работы
- •18.4. Проектирование водоотводящих сетей и комплексов очистных сооружений
- •18.5. Особенности проектирования при реконструкции водоотводящих сетей и сооружений
- •18.6. Сравнение и технико-экономическая оценка вариантов проектных решений
- •Форма для сравнения различных вариантов проектных решений
- •Тыс. КВт Гкал тонн тыс. Т год
- •Глава 19
- •19.1. Общие компоновочные решения очистных сооружений
- •19.3. Примеры очистных сооружений крупных городов
- •19.5. Примеры очистных сооружений малых городов и посёлков городского типа
- •Глава 20
- •20.2. Автоматизация и контроль за работой водоотводящих сетей, насосных станций и очистных сооружений
- •20.3. Структура систем автоматического управления
- •4. Перспективное планирование.
- •Оперативный учет
- •2. Оперативное планирование
- •Связь с диспетчером
- •Краткосрочный прогноз поступления и откачки сточной воды на гнс и рнс
- •20.4. Диспетчерское управление
- •Средства автоматического управления
- •Средства автоматическою управления
- •Глава 21
- •21.1. Теоретические основы надёжной работы водоотводящих систем
- •21.2. Обеспечение надёжной работы самотечной водоотводящей сети
- •Виды нарушений в водоотводящих трубопроводах Краткая характеристика состояния трубопроводов
- •21.3. Обеспечение надёжной работы напорных водоводов и насосных станций
- •Повреждения строителями 4% Износ лотка трубы' 8%
- •21.4. Обеспечение надёжности работы комплексов сооружений по очистке сточных вод и обработке осадков
- •Раздел VII
- •Глава 22
- •22.1. Поля орошения и поля фильтрации
- •Нормы нагрузки осветленных бытовых сточных вод на поля орошения (районы со среднегодовой высотой слоя атмосферных осадков 300-500 м)
- •Нормы нагрузки осветленных сточных вод на поля фильтрации (районы со среднегодовой высотой слоя атмосферных осадков 300-500 мм)
- •Глава 23
- •Параметры работы комплекса
- •23.2.Сооружения для локальной очистки сточных вод
- •Глава 24
- •Раздел VIII системы водоотведения в особых природных и климатических условиях
- •Глава 25
- •25Л. Оценка природных и климатических условий при проектировании и строительстве систем водоотведения
- •25.2. Особенности расчета, проектирования и строительства систем водоотведения в сейсмических районах
- •Глава 26
- •26.1. Особенности расчета, проектирования, строительства и эксплуатации систем водоотведения в просадочных грунтах, на подрабатываемых и подтапливаемых территориях
- •26.3. Системы водоотведения на подтапливаемых территориях
- •26.4. Особенности проектирования сооружений и сетей водоотведения для строительства на просадочных грунтах
- •26.5. Проектирование закрепления грунтов
- •26.7. Проектирование водопонижения
- •26.8. Проектирование водоотводящих систем на просадочных грунтах
- •Глава 27 системы водоотведения в районах с вечномерзлыми грунтами
- •27Л. Выбор строительных площадок и проектных решений
- •27.2. Характеристики вечномерзлых грунтов оснований
- •27.3. Использование вечномерзлых грунтов в качестве оснований для систем водоотведения
- •27.4. Проектирование и строительство систем водоотведения
- •Оглавление
- •Глава 12. Сооружения биологической очистки сточных вод методом биофильтрации 308
- •Глава 13. Сооружения физико-химической очистки
- •Глава 14. Глубокая очистка и обеззараживание сточных вод 396
- •Глава 27. Системы водоотведения в районах с
- •Водоотведение и очистка сточных вод
11.4. Конструкции аэротенков
Конструктивное оформление аэротенков определяется пропускной способностью очистных сооружений, исходными характеристиками подлежащей очистке сточной воды, определяющими режим работы аэротенков, типом аэрационного оборудования для подачи воздуха и перемешивания, конструкцией других сооружений, включаемых в технологическую схему очистки сточной воды и др. При конструировании решаются вопросы оптимального расположения коммуникаций, подводящих к аэротенкам сточную воду на очистку, циркуляционный активный ил, воздух, коммуникаций, отводящих иловую смесь из аэротенков в сооружения илоотделения, и избыточного активного ила на обработку. Под оптимальным понимается взаимное расположение коммуникаций, обеспечивающее возможность работы аэротенков по заданной технологической схеме, а при необходимости и переход от одной схемы работы к другой (например, от схемы без регенераторов ила к схеме с регенерацией, или наоборот), удобство контроля и управления, оперативное переключение в случае плановой или непредвиденной остановки сооружения для ремонта и пр. Одним из важных требований при этом является обеспечение минимальной длины коммуникаций из соображений как снижения строительных затрат, так и оптимизации высотной схемы расположения сооружений.
Для крупных очистных сооружений применяются, главным образом, прямоугольные в плане аэротенки с пневматической аэрацией, хотя имеются крупные очистные сооружения с механической системой аэрации. Для сравнительно небольших очистных сооружений применяются как прямоугольные, так и круглые в плане аэротенки с пневматической, механической или пневмомеханической аэрацией. Одной из существенных характеристик аэротенков является их связь с сооружениями последующего разделения иловой смеси. С этой точки зрения различают аэротенки с отдельными отстойными сооружениями, т.е. с независимым друг от друга гидравлическим режимом работы аэротенков и вторичных отстойников, и аэротен-ки-отстойники, в которых эти два сооружения определенным образом гидравлически связаны и взаимозависимы.
Аэротенки с отдельными сооружениями илоотделения характеризуются тем, что иловая смесь из них выводится и направляется в отстойные сооружения, из которых возврат циркуляционного активного ила осуществляется принудительно либо насосными установками, либо эрлифтами. Такие аэротенки могут применяться на очистных сооружениях практически любой пропускной способности, но наиболее часто на крупных и средних. Широко применяемые аэротенки для крупных и средних очистных сооружений представляют собой прямоугольный в плане резервуар, разделенный на два-четыре коридора продольными перегородками, обеспечивающими последовательное протекание по ним иловой смеси. Такое коридорное устройство позволяет типизировать поперечные размеры аэротенков и с высокой степенью гибкости вводить при необходимости регене
р
ацию:
от 25% при выделении под регенерацию
одного коридора до 75% при выделении под
них трех коридоров в 4-коридорном
аэротенке (или 33 и 66% при 3-коридорном
аэротенке, или 50% при 2- и 4-коридорном
аэротенке). При этом в значительной
мере снижается возможность продольного
перемешивания иловой смеси при работе
аэротенков в режиме вытеснителей
(см. рис. 11.15). Коридорное устройство
аэротенков позволяет относительно
легко решать вопросы подвода очищаемой
жидкости и ила в аэротенк и отвода
из него иловой смеси независимо от
технологической схемы работы аэротенка.
Ширина коридора может составлять 4,5 - 9
м (а иногда и более) при глубине его до
6 м. Длина аэротенков может достигать
нескольких десятков метров в
зависимости от пропускной способности
очистных сооружений.
На рис. 11.15 показан типовой 4-коридорный аэротенк, конструкция которого разработана ОАО ЦНИИЭП Инженерного оборудования. Длина коридора аэротенка 84 м, а ширина может составлять 4,5; 6 и 9 м.
При ширине коридора 4,5 м рабочая глубина аэротенка составляет 3,2 либо 4.4 м, а при ширине 6 и 9 м - 4,4 либо 5 м. Такой аэротенк работает по принципу аэротенка-вытеснителя как с регенерацией ила, так и без регенерации. Четырехкоридорное устройство позволяет отводить под регенераторы от J до 3 коридоров, т.е. аэротенки могут работать с 25%-ной, 50%-ной, 75%-ной регенерацией.
При 25%-ной регенерации ила коридор I служит регенератором и сточная вода из верхнего канала осветленной воды 4 подается в начало коридора II, где смешивается с регенерированным активным илом. Образовавшаяся иловая смесь протекает по II, III, IV коридорам. В конце IV коридора иловая смесь переливается в канал иловой смеси 10, откуда она самотеком отводится через распределительную чашу во вторичные отстойники. После отделения ила от очищенной воды во вторичных отстойниках рециркуляционный активный ил эрлифтами или насосами по трубопроводу 9 подается в коридор I. Такая же схема работы аэротенка сохраняется и при 75%-ной регенерации с той лишь разницей, что вода из верхнего канала осветленной воды подается в начало не II, а IV коридора, поскольку I, II и III коридоры отводятся под регенераторы и иловая смесь протекает лишь по коридору IV. Напротив, при введении 50%-ной регенерации, т.е. когда коридоры I и II отводятся под регенераторы, вода на очистку подается в начало коридора III аэротенка из нижнего канала осветленной воды 11, куда она поступает из первичных отстойников через посредство среднего канала 2.
Если аэротенк работает в режиме без регенерации, то вода в него через средний канал 2 поступает в нижний канал осветленный воды 11 и далее в коридор I, куда подается и активный ил. Иловая смесь протекает последовательно через все четыре коридора. Из коридора IV иловая смесь поступает в распределительный канал вторичных отстойников 10.
Для аэрации иловой смеси воздух от воздуходувок по системе воздуховодов 1, 12, 13 через воздушные стояки 5 подается в диспергаторы воздуха (аэраторы), располагаемые у днища аэротенка (см. § 11.5). Для предотвращения осаждения взвешенных веществ в каналах распределения воды или сбора иловой смеси, в них также устанавливаются аэраторы, и осуществляется подача воздуха к ним через соответствующие воздушные стояки 5.
Воздух в данной конструкции аэротенков диспергируется с помощью фильтросных пластин, уложенных в бетонных каналах, которые устраивают в днище (или на днище) аэротенка вдоль продольной стенки его коридора.
В коридорах I и II укладывают по три ряда фильтросных пластин, а в коридорах III и IV - по два ряда.
Для удаления воды из подфильтросных каналов, куда она может попадать при случайной или плановой остановках воздуходувки или отключении воздуха в секцию, служат водовыбросные стояки диаметром
60 мм, на которых открываются задвижки за несколько минут до включения подачи воздуха в каналы.
На Курьяновской станции аэрации (Москва) запроектированы и построены 4-коридорные аэротенки с отдельной регенерацией активного ила. Коридор аэротенка имеет длину 133 м, глубину 4 м и ширину 8 м.
Е
сли
отстойные сооружения имеют прямоугольную
в плане форму (горизонтальные
отстойники), то может устраиваться
единый блок аэротенков с первичными
и вторичными отстойниками (рис. 11. 16),
что позволяет до минимума свести
длину связывающих эти сооружения
коммуникаций.
Н
а
рис. 11.17 показан аэротенк-смеситель,
разработанный Гипрокоммунводоканалом.
Аэротенк включает два коридора, один
из которых является собственно аэротенком,
а другой - регенератором активного ила.
Регенератор отделен от аэротенка легкой
стенкой из волнистого шифера. Длина
коридора аэротенка 135, ширина 9, рабочая
Сточная вода подается в коридор собственно аэротенка рассредоточен-но через отверстия, расположенные на расстоянии 40 м одно от другого.
Для опорожнения аэротенков предусматривается устройство лотков в середине каждого коридора с продольным уклоном в 0,001 в сторону
трубопровода опорожнения 2, принимающего воду при открытии задвижек 3. Днище коридора имеет также поперечный уклон в 0,001 в сторону лотка опорожнения аэротенка.
Устройство аэротенков с механической аэрацией практически ничем не отличается от устройства аэротенков с пневматической аэрацией. Однако в силу специфики механических аэраторов, имеющих квадратную или круглую в плане зону действия, при их применении стремятся увеличить ширину аэротенка (или коридора) до пяти-шести диаметров аэратора, что в свою очередь предопределяет и специфичность подходов к компоновочным решениям, которые должны предусматривать возможность демонтажа и замены в случае необходимости электропривода или аэрационного агрегата в целом. Естественно, что с увеличением пропускной способности очистных сооружений увеличивается потребное количество единиц аэрационного оборудования, что значительно усложняет компоновку сооружений с механической аэрацией.
Х
арактерной
чертой аэротенков-отстойников является
конструктивное совмещение аэрационного
резервуара и вторичного отстойника в
одном сооружении. Часть сооружения, в
которой осуществляется аэрация иловой
смеси, получила название аэрационной
зоны, а другая — отстойной зоны. Обе эти
зоны связаны между собой отверстиями,
окнами, щелями и пр., обеспечивающими
переток иловой смеси из аэрационной
зоны в отстойную и возврат активного
ила из отстойной зоны в аэрационную без
применения оборудования для принудительного
возврата ила в зону аэрации. Примером
такого сооружения может служить широко
применяющаяся во Франции конструкция
«Оксиконтакт», разработанная французской
фирмой "Дегремон" (рис. 11.18).
Сточная вода после первичных отстойников подается в распределительный трубопровод, расположенный вдоль аэрационной зоны, находящейся в центре прямоугольного в плане резервуара. С обеих сторон аэрационной зоны расположены отстойные зоны (позиция 3 на рис. 11.18), отделенные от нее внутренними наклонными перегородками. Перегородки имеют в их верхней части регулируемые переливные окна, через которые иловая смесь поступает в отстойную зону. В низу перегородки примыкают
К" наклонной внешней стенке аэротенка таким образом, что образуется продольная щель с каждой продольной стороны аэрационной зоны. Через эти щели осаждающийся в отстойной зоне активный ил под воздействием гравитационных сил возвращается в зону аэрации. Осветленная вода после отделения ила собирается лотками 2, расположенными вдоль внешней стороны каждой отстойной зоны. Избыточный активный ил отводится из осадочной части отстойной зоны через илоотводные трубопроводы, расположенные на определенных расстояниях друг от друга. Аэрационная зона снабжается воздухом через колпачковые аэраторы «Вибрэйр», монтируемые либо в плиту днища, перекрывающую воздушный канал, либо в воздуховоды, укладываемые по днищу этой зоны таким образом, чтобы вызывать двойной спиралеобразный поток иловой смеси, показанный на рис. 11.18 стрелками. Глубина сооружения около 4 м, длина 15-70 м (в зависимости от требуемой пропускной способности). Циркуляционный расход активного ила может достигать 200-300% расчетного расхода сточной воды.
Д
ля
станций сравнительно небольшой пропускной
способности довольно широко применяются
аэротенки-отстойники круглой в плане
формы с концентрическими зонами аэрации
и отстаивания. В качестве примера такого
сооружения можно привести радиальный
аэротенк-отстойник с центральной
зоной аэрации и периферийной зоной
отстаивания. На рис.11.19 представлена
конструкция, в которой сточная вода
подается в центр зоны аэрации, где имеет
место наиболее высокая степень
турбулизации жидкости под действием
пневмомеханического аэратора.
Это обеспечивает быстрое и полное ее смешение с активным илом, возвращающимся из отстойной зоны в аэрационную зону через круговую придонную щель, через которую сообщаются обе зоны. Применяются и аналогичные установки с механическим аэратором с вертикальной осью вращения, также располагаемым в центре аэрационной зоны. Конструкции таких установок предназначены для работы в режиме аэротенка-смесителя.
П
рименяются
и аэротенки-отстойники промежуточного
типа, в которых возврат активного
ила из отстойной зоны в аэрационную
осуществляется принудительно.
Примером такого сооружения в радиальном
исполнении является аэротенк-отстойник
типа "Турбофлок", в котором отстойная
зона, выполненная в виде радиального
отстойника со скребковым механизмом,
располагается в центре сооружения, а
возврат ила в зону аэрации осуществляется
с помощью насосов (рис. 11.20).
В аэрационной зоне применена система аэрации, состоящая из неподвижных аэраторов, монтируемых у днища аэротенка, а также аэраторов, перемещаемых на вращающейся платформе в противоположном движению жидкости направлении, позволяющих снизить затраты электроэнергии на единицу снимаемой БПК. Фирмой «Эпюрекс» разработаны типоразмеры этого сооружения для обслуживания 1600-20 000 жителей. Установка работает в режиме продленной аэрации для станций, обслуживающих до 6500
жителей и в режиме классической аэрации для крупных очистных сооружений.
К
аэротенкам-отстойникам промежуточного
типа относится и установка, разработанная
кафедрой водоотведения МГСУ (рис. 11.21).
Возврат активного ила из зоны отстаивания осуществляется под действием гидростатического напора, развиваемого механическим поверхностным аэратором дискового типа, устанавливаемым в центре квадратной (или прямоугольной) в плане формы зоны аэрации. По трубопроводу, связывающему иловую часть отстойной зоны со стабилизатором потока в виде вертикальной трубы, устанавливаемой под аэратором, активный ил возвращается в зону аэрации. Гидростатический напор, развиваемый аэратором, выражается в создании разницы между уровнем воды в отстойной зоне и уровнем воды в зоне действия аэратора. Этот напор может составлять 15-20 см водяного столба, что побуждает движение активного ила в зону действия аэратора.
Для малых очистных станций разработаны компактные установки, включающие полный набор сооружений для очистки сточной воды и минерализации избыточного активного ила, в которых используются названные выше принципы компоновки аэрационной и отстойной зон и которые предназначены для обработки сточных вод объемом от нескольких кубометров до нескольких сот кубометров в сутки.
Циркуляционные окислительные каналы (ЦОК) получили определенное распространение в странах Западной Европы, особенно в Голландии, где они были впервые предложены А. Пасвиром. Эти аэрационные сооружения представляют собой замкнутый канал трапецеидального или прямоугольного сечения овальной в плане формы, по которому циркулирует иловая смесь со скоростью 0,25-0,3 м/с. Такая скорость предотвращает осаждение активного ила и обеспечивается горизонтальными цилиндрическими аэраторами, устанавливаемыми поперек канала (рис. 11.22).
Ц
ОК
работает по принципу аэротенков
продленной аэрации, как правило, без
первичного отстаивания. Средняя
длительность пребывания ила в нем
составляет около 40 сут, что позволяет
обеспечить значительную его минерализацию.
В зависимости от расхода очищаемой
жидкости применяются как схемы без
вторичного отстаивания (рис. 11.22, а),
так
и схемы со вторичным отстаиванием
(рис. 11.22, б).
По
схеме а
осуществляется
периодическая работа канала то как
аэротенка, то как вторичного отстойника.
Для бесперебойной работы сооружения
требуется устройство, как минимум, двух
каналов: когда один канал работает как
аэротенк и принимает сточную воду
на очистку, второй канал работает как
вторичный отстойник. После необходимой
длительности отстаивания очищенная
жидкость выпускается, и в него начинает
подаваться сточная вода на очистку и
канал работает как аэротенк, тогда как
второй канал начинает работать как
вторичный отстойник.
По схеме б ЦОК работает непрерывно с выведением активного ила из вторичного отстойника и подачей его в аэрационный канал. Избыточный активный ил в обеих схемах направляется на иловые площадки.
В настоящее время в ЦОК применяются механические аэраторы с вертикальной осью вращения типа "Симкар". Аэратор устанавливается в месте закругления канала с устройством перегородки таким образом, чтобы весь формируемый аэратором поток жидкости направлялся .вдоль канала. Такой ЦОК получил название «Карусель» и широко применяется для обслуживания населенных мест с числом жителей 8...20 тыс. Благодаря большой окислительной и особенно перекачивающей способности аэратора стало возможным увеличить глубину канала с традиционных 0,8-1 м до
2.5-4 м и, следовательно, значительно сократить необходимую плошаль этого сооружения. Опыт эксплуатации таких каналов показал, что расчетный объем канала для обеспечения необходимой степени биологической очистки может быть снижен на 1 жителя с 0,25-0,3 м3 до 0,15-0,18 м3. Однако, сокращать расчетный объем канала признано нецелесообразным из соображений последующей обработки ила. Также нецелесообразным признано и введение первичного отстаивания, так как количество избыточного ила при работе канала из расчета 0,25 м3 на 1 жителя не превышает 30 г по е>э;ому веществу на 1 жителя в сутки. По некоторым данным, экономически эффективно применение ЦОК типа "Карусель" для обслуживания населенных мест с числом жителей до 30 000.
Окситенки. С начала 70-х годов сначала на уровне научных исследований, а затем и на уровне практического использования стали проводиться работы по применению технического кислорода или воздуха, обогащенного кислородом, вместо атмосферного воздуха для обеспечения аэробных условий в сооружениях биологической очистки. Использование кислорода вместо воздуха позволяет поддерживать в очищаемой воде концентрацию растворенного кислорода в 5-10 мг/л вместо обычно принятой для аэротенков концентрации в 1,5-2 мг/л. Это в свою очередь дает возможность существенного повышения окислительной способности сооружения и устойчивости очистных процессов при шоковых и резко колеблющихся нагрузках на активный ил. Кроме того, прирост активного ила в таких сооружениях на 25-35% ниже, чем в аэротенках за счет более глубокого окисления изымаемых загрязнений. Активный ил значительно лучше отделяется от очищенной воды и уплотняется, что позволяет уменьшить объем вторичных отстойников и уплотнителей избыточного ила.
По технологической сути процессы биологической очистки в сооружениях с использованием кислорода идентичны очистным процессам в аэротенках. Однако их конструктивное оформление и эксплуатация значительно сложнее, чем аэротенков. Это связано с необходимостью практически полного использования подаваемого кислорода, учитывая стоимость его получения и подачи в сооружение.
В отечественной практике очистки сточных вод с применением кислорода используются окситенки, предложенные ФГУП НИИ ВОДГЕО (рис. 11.23). Конструктивно окситенк выполнен в виде резервуара круглой в плане формы с цилиндрической перегородкой 12, разделяющей его на зону аэрации 13 в центре и илоотделитель 18 по периферии сооружения. В средней части по высоте цилиндрической перегородки устроены окна 16 для перепуска иловой смеси из зоны аэрации в илоотделитель; в нижней части перегородки - окна 15 для возвращения ила в зону аэрации.
Зона аэрации оборудована герметическим перекрытием 6, на котором устанавливается электропривод 3 турбоаэратора 4. На перекрытии смонтированы трубопровод подачи кислорода 7 и продувочный трубопровод 1 с клапанами.
Илоотделитель 18 оборудован перемешивающим устройством, представляющим собой вращаемые приводом решетки из вертикальных стержней 8 d = 30...50 мм, расположенных один от другого на расстоянии 300 мм. В нижней части решеток размещается шарнирно подвешенный скребок 14. Илоотделитель работает со взвешенным слоем активного ила, уровень которого стабилизируется автоматически путем сброса избыточного ила через трубу 10.
Сточная вода поступает в зону аэрации по трубе 17, где турбоаэра-тором аэрируется и интенсивно перемешивается с активным илом. Из зоны аэрации через окна 16 и зону дегазации иловая смесь поступает в илоотделитель. Благодаря направляющим щиткам жидкость в илоотделителе медленно движется по окружности, вследствие чего значительно интенсифицируется процесс отделения и уплотнения ила. Очищенная вода проходит сквозь слой взвешенного активного ила, доочищается от взвешенных и растворенных органических веществ, поступает в сборный лоток и отводится по трубе. Возвратный активный ил спирально опускается вниз и через окна 15 направляется в зону аэрации.
Окситенк оборудуется системой автоматизации, обеспечивающей подачу кислорода в зону аэрации в строгом соответствии со скоростью его потребления. Система автоматически поддерживает заданную концентрацию растворенного кислорода в иловой смеси окситенка при любых изменениях состава, концентрации или расхода сточной воды.
Высокая концентрация растворенного кислорода в окситенке позволяет значительно повысить дозу активного ила в сооружении и интенсифицировать процессы нитрификации аммонийного азота. Это дает возможность повышения окислительной мощности окситенков в 5-6 раз по сравнению с аэротенками и снизить капитальные затраты в 1,5-2 раза, а эксплуатационные в 2,5-3 раза.
В настоящее время наиболее перспективно применение окситенков на объектах, которые имеют собственный технический кислород или могут получать его от соседних предприятий (например, заводы по производству синтетического каучука, а также химические, коксохимические, нефтехимические и др.). Весьма перспективным применение окситенков может оказаться и для снижения газовых выбросов в атмосферу при очистке сточных вод, содержащих загрязнения, отдуваемые из очищаемой воды в процессе аэрации в атмосферу.
Технологический расчет окситенков осуществляется по тем же формулам, что и расчет аэротенков-смесителей, но с рабочей дозой ила в пределах 6-10 г/л и концентрацией растворенного кислорода 6-12 мг/л.