
- •1.Нефтепромысловая геология как наука и ее значение.
- •2.Пластовые давления, карты изобар, методы определения давления.
- •3.Способы добычи нефти: фонтанный, компрессорный и глубиннонасосный.
- •4.Цели и задачи нефтегазопромысловой геологии.2алина
- •5.Типы залежей нефти и газа, методы графического их изображения.
- •6.Освоение эксплуатационных скважин.
- •7.Основные характеристики продуктивного пласта.
- •8.Расположение скважин, форма сеток и расстояния между скважинами.
- •11.Сжимаемость нефти, объемный коэффициент нефти.
- •12.Осушка газа, применяемые методы.
- •13.Системы разработки месторождений нефти и газа.
- •14.Эксплуатация месторождений нефти при различных типах заводнения.
- •16.Основные типы пластовой энергии.
- •17.Понятие запасов углеводородов. Категории запасов.
- •18.Водо-, нефте-, газонасыщенность.
- •19.Эксплуатационные объекты, их выделение в разрезе месторождения.
- •20.Вскрытие и освоение продуктивных пластов.
- •21. Компрессорная добыча нефти, системы подъемников.
- •22.Разработка отдельного продуктивного пласта: темп разработки, порядок разбуривания, методы воздействия на пласт.
- •23.Методы подсчета запасов нефти.
- •24.Охрана окружающей среды, контролирующие органы.
- •25.Одновременно-раздельная эксплуатация объектов.
- •26.Принципы и методы обезвоживания нефти.32юля
- •27.Функции Госгортехнадзора.
- •28. Водонапорные разработки нефтяного месторождения.
- •29.Обессоливание и стабилизация нефти.
- •30.Глубиннонасосная эксплуатация месторождения.
- •31.Сепарация газа от нефти.
- •32.Методы повышения нефтеотдачи продуктивных пластов: гидроразрыв и солянокислотная обработка. Коля
- •33.Ликвидация скважин.
- •34.Консервация скважин.
- •36.Нижняя граница кондиционности коллекторов.
- •37.Индивидуальная и групповая системы сбора газа.
- •38.Структура нгду.
- •39.Н.И.Воскобойников и его новые приемы в разработке.
- •40.Развитие нефтяной промышленности до 1917 года.
- •41.Пластовая температура, ее изменение с глубиной.
- •42.Классификация вод нефтяных залежей по условиям.Залегания.
- •43.Сбор нефти на промысле.
- •44.Прогнозные ресурсы.
- •45.Основные физические свойства нефти.
- •46.Начальное пластовое давление, приведенное давление.
- •47.Товарные свойства нефти.
- •48. Промысловая подготовка газа.
- •49.Региональный этап нефтегазопоисковых работ.
- •50.Самотечная двухтрубная система сбора нефти.
- •51.Термические методы повышения нефтеотдачи пластов.
- •52.Газосепаратор, его принципиальное устройство.
- •53.Поисково-оценочный этап нефтегазопоисковых работ.
- •54.Виброакустическое воздействие на пласт.
- •55 Высоконапорная однотрубная система сбора нефти.
- •56 Разведочный этап нефтегазопоисковых работ.
- •61.Методы подсчета запасов нефти.
- •62.Методы подсчета запасов газа.
11.Сжимаемость нефти, объемный коэффициент нефти.
Нефть, как и все жидкости, обладает упругостью, т.е. способностью изменять свой объём под действием внешнего давления. Уменьшение объёма характеризуется коэффициентом сжимаемости (b) или объёмной упругости:
.
Коэффициент сжимаемости зависит от температуры (рис. 4.8), давления (рис. 4.9), состава нефти и газового фактора.
Нефти, не содержащие растворённого газа, обладают сравнительно низким коэффициентом сжимаемости (b ≈ 0,4-0,7 ГПа-1), а лёгкие нефти со значительным содержанием растворённого газа – повышенным коэффициентом сжимаемости (до 14 ГПа-1). Следовательно, с увеличением плотности нефти коэффициент сжимаемости уменьшается, а с увеличением количества растворенного углеводородного газа коэффициент сжимаемости нефти возрастает. Высокие коэффициенты сжимаемости свойственны нефтям, которые находятся в пластовых условиях, близких к критическим. Возрастание пластовой температуры вызывает увеличение коэффициентом сжимаемости.
Объёмный коэффициент нефти
С количеством растворённого газа в нефти также связан объёмный коэффициент b, характеризующий соотношение объёмов нефти в пластовых условиях и после отделения газа на поверхности при дегазации:
где Vпл – объём нефти в пластовых условиях;
Vдег – объём нефти при стандартных условиях после дегазации.
Увеличение пластового давления до давления насыщения приводит к увеличению количества растворенного в нефти газа и как следствие к увеличению величины объёмного коэффициента.
Дальнейшее увеличение пластового давления, выше давления насыщения будет влиять на уменьшение объёма нефти в пластовых условиях за счет ее сжимаемости, что приводит к уменьшению коэффициента сжимаемости. Точка б (рис. 4.10) отвечает состоянию, когда весь газ, находящийся в залежи сконденсировался и перешел в жидкое состояние и началу выделения газа из нефти и отвечает максимальному значению объёмного коэффициента нефти.
Объёмный коэффициент определяется по глубинным пробам. Для большинства месторождений величина b изменяется в диапазоне 1,07-1,3. Для месторождений Западной Сибири величина b колеблется от 1,1 до 1,2. Используя объёмный коэффициент, можно определить усадку нефти (U), т.е. уменьшение объёма пластовой нефти при извлечении её на поверхность (в %):
Усадка некоторых нефтей достигает 45-50 %.
12.Осушка газа, применяемые методы.
Зачем нужна вообще осушка газа. Наличие в газе избыточной влаги вызывает ряд серьезных проблем при трубопроводном транспорте газа. В процессе обработки и транспорте газа за счет снижения температуры в системе происходит конденсация водяных паров и образование водного конденсата. Взаимодействие водяного конденсата с компонентами природного газа приводит к образованию гидратов. Гидраты, отлагаясь в газопроводах, уменьшают их сечение, а иногда приводят к аварийным остановкам. Кроме того, наличие воды в системе вызывает коррозию оборудования, особенно при содержании в сырьевом газе кислых компонентов, таких как Н2S, CO2. В связи с этим природные и нефтяные газы перед подачей в магистральные газопроводы и в цикле переработки подвергаются осушке.
Общее.
Выбор способа осушки газа зависит от состава сырья и в первую очередь от содержания тяжелых углеводородов. По этому признаку газы условно делятся на тощие и жирные. Тощими принято называть газы, в которых содержание тяжелых углеводородов не препятствует их трубопроводному транспорту до потребителя.
Для осушки тощих газов применяются абсорбционные и адсорбционные процессы. При наличии в газе конденсата переработка газа осуществляется с применением низкотемпературных процессов. При этом на стадии охлаждения газа происходит конденсация водяных паров за счет снижения равновесной влагоемкости газа.
По лекциям.
Осушка газа:
Охлождение газа
Абсорбция
Адсорбция
1)Охлождение происходит в устье скважины при перепаде давления.
Понижение температуры в тех же емкостях или в самих же коллекторах, кот идущие в ЦСП.
2)Абсорбция-диэтиленкликоль,триэтиленгликоль, моноэтиленгликоль.
Удаление воды.
Газ контактирует с этилен-гликолем, растворяя вод. пары.
Вода остается внизу газ выходит на пов-ть.
Чем больше намочен, тем лучше больше взаимодействует с этиленгликолем.
«частичная потеря газа»
3)Адсорбция –тот же механизм, реагент-уголь.
Для удаления H2S:
С2H5NH4 –этаноламин-дешевый(90р-1м3 )по той же схеме (в жидком состоянии.)
CO2- железные и керамические кольца, которые способствуют растворению CO2 в воде.
Из прошлых шпор.
Противоточные абсорбционные процессы, в основном, применяют для осушки тощих газов, а также для осушки кислых газов, газов после установок очистки газа от кислых компонентов с применением водных растворов разных реагентов, при подготовке газов к низкотемпературной переработке и т.д.
Прямоточные абсорбционные процессы используются в основном на нефтяных месторождениях. Осушка газа по этому спососу, производится, как правило, в горизонтальных абсорберах. На месторождениях России (Тюменская область, Томскнефть, Башнефть, Дагнефть и т.д.) применение нашли установки осушки производства бывшей ГДР. Производительность таких установок небольшая и составляет от 0,5 до 2,5 млн. м3/сут. Некоторые характеристики и область применения прямоточных процессов осушки газа приведены в работе. [9]
Адсорбционные процессы применяют как для подготовки тощих газов к транспорту, так и для глубокой осушки газа, т.е. перед подачей газа на низкотемпературную переработку газа, например, на установках получения гелия. Эти процессы нашли также широкое применение при осушке сжиженных газов, используемых в качестве моторного топлива или хладагента.
Проектирование установок осушки газа включает в себя: определение необходимой точки росы газа по воде, выбор концентрации исходного и отработанного растворов осушителя, обоснование выбора оборудования для блоков осушки и регенерации и т.д.
1. Осушка газов гликолями
Общие требования, предъявляемые к осушителям природного газа:
а) высокая поглотительная способность в широком интервале концентраций, давления и температур;
б) низкое давление насыщенных паров, чтобы потери, связанные с их испарением, были незначительными;
в) температуру кипения, отличающуюся от температуры кипения воды настолько, что отделение поглощенной воды от осушителя могло бы осуществляться простыми методами;
г) плотность, отличающаяся от плотности углеводородного конденсата для обеспечения четкого разделения простыми способами;
д) низкая вязкость в условиях эксплуатации, что обеспечивает хороший контакт с газом в абсорбере, теплообменниках и другом массообменном оборудовании;
е) высокая селективность в отношении компонентов газа, т.е. низкую взаиморастворимость с ними;
ж) нейтральные свойства, т.е. не вступать в химические реакции с ингибиторами, применяемыми в процессе добычи газа;
з) малая коррозионная активность;
и) низкая вспениваемость в условиях контакта с газовой смесью;
к) высокая устойчивость против окисления и термического разложения.
Применение двухкомпоненого осушителя, когда смесь готовят непосредственно на газообрабатывающем объекте, требует дополнительных емкостей и насосов для его хранения и закачки. Если из-за необходимости изменения качественных показателей (температуры застывания, вязкости и т.д.) применяют двухкомпонентный осушитель, то второй компонент должен отвечать тем же требованиям, что и все осушители. Желательно, чтобы разница между температурой кипения компонентов абсорбента и воды была как можно больше.
На установках комплексной подготовки газа некоторая часть осушителя попадает в водоемы и на почву, поэтому он должен быть неядовитым и способным к полному биологическому разрушению. Кроме того, осушители должны быть дешевыми и нетоксичными.
Этим требованиям в той или иной степени отвечают гликоли - этиленгликоль (ЭГ), диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ), пропиленгликоль (ПГ), смеси гликолей с их эфирами и т.д.
На практике в схемах установок абсорбционной осушки газа в качестве осушителей применяются высококонцентрированные растворы ДЭГа и ТЭГа.
Водные растворы других гликолей, а в частности этиленгликоля и пропиленгликоля, нашли применение в качестве ингибитора гидратообразования.
Гликоли являются двухатомными спиртами жирного ряда и с водой смешиваются во всех отношениях. Их водные растворы не вызывают коррозию оборудования. Это обстоятельство, по сравнению с другими абсорбентами, дает им дополнительное преимущество, так как позволяет изготовить оборудование из дешевых марок стали.
2. Осушка газов с использованием твердых сорбентов.
Основные промышленные сорбенты, используемые для осушки углеводородных газов это силикагели и молекулярные сита.
2.1. Силикагели
Преимущества силикагелей: низкая температура регенерации, то есть низкие энергозатраты, по сравнению с другими минеральными сорбентами (окись алюминия, цеолиты), относительно низкая себестоимость.
Для осушки газа на промышленных установках наиболее эффективно применение мелкопористого силикагеля марки КСМ. Он обладает наибольшей адсорбционной емкостью по сравнению с другими марками силикагеля, дает более низкую степень осушки, имеет более высокую механическую прочность как от истирания, так и от раздавливания. Однако при наличии в газе капельной влаги он быстро измельчается. Поэтому обычно предусматривают защиту слоя мелкопористого силикагеля слоем инертного к капельной влаге адсорбента.
Наличие в газе углеводородов тяжелее бутана следует учитывать при выборе сорбента и режима его регенерации. Тяжелые углеводороды С5 и выше прочно удерживаются силикагелем и при регенерации удаляются не полностью. При этом необходимо иметь в виду, что нагрев силикагеля выше 220°С ведет к деструктивным изменениям поверхности силикагеля, и приводит к снижению его адсорбционной емкости. Нагрев выше 250°С ведет к резкому падению активности силикагеля.
В начальный период загрузки силикагель имеет высокую активность порядка 15-20% мас., которая в процессе эксплуатации снижается до 7% мас.
2.2. Цеолиты
Синтетические цеолиты - наиболее дорогие адсорбенты, но их использование на установке осушки существенно снижает эксплуатационные расходы. Цеолиты обеспечивают очень низкую точку росы при высокой адсорбционной способности, прочны при контакте с капельной влагой.
Уникальная структура синтетических цеолитов наряду с осушкой газа позволяет извлечь тяжелые углеводороды. Цеолиты более устойчивы к воздействию низких температур, чем силикагель. Опыт эксплуатации адсорбентов в условиях северных месторождений, а также лабораторные исследования показывают, что при многократных воздействиях низких температур силикагель растрескивается: обводненный силикагель разрушается на 15-20%, а регенерированный - на 5-7%; цеолит же в этих условиях визуально не изменяется и не снижает своих эксплуатационных свойств.
В зависимости от удельного количества извлекаемых компонентов, глубины осушки газа, характеристики применяемого оборудования и свойства адсорбентов на практике могут реализоваться схемы 3-х и 2-х адсорберных установок осушки газа.