
- •Тема 6 логика и техника финансовых вычислений
- •Временная ценность денег
- •Операции наращения и дисконтирования
- •Процентные ставки и методы их начисления
- •Области применения схемы простых процентов
- •Внутригодовые процентные начисления
- •Начисление процентов за дробное число лет
- •Непрерывное начисление процентов
- •Эффективная годовая процентная ставка
- •Будущая и дисконтированная стоимости: экономический смысл и техника расчета
- •Будущая стоимость единичного платежа
- •Дисконтированная стоимость единичного платежа
- •Виды денежных потоков
- •Оценка денежного потока с неравными поступлениями
- •Оценка потока постнумерандо
- •Оценка потока пренумерандо
- •Оценка аннуитетов
- •Оценка срочного аннуитета
- •Оценка бессрочного аннуитета
- •Метод депозитной книжки
- •Оценка аннуитета с изменяющейся величиной платежа
Процентные ставки и методы их начисления
Ссудозаемные операции, составляющие основу коммерческих вычислений, имеют давнюю историю. Именно в этих операциях и проявляется прежде всего необходимость учета временной ценности денег. Несмотря на то что в основе расчетов при анализе эффективности ссудозаемных операций заложены простейшие, на первый взгляд, схемы начисления процентов, эти расчеты многообразны ввиду вариабельности условий финансовых контрактов в отношении частоты и способов начисления, а также вариантов предоставления и погашения ссуд.
Понятия простого и сложного процентов
Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. Поскольку стандартным временным интервалом в финансовых операциях является один год, наиболее распространен вариант, когда процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления: схема простых процентов (simple interest) и схема сложных процентов (compound interest).
Схема
простых процентов предполагает
неизменность базы, с которой проис*
ходит начисление. Пусть исходный
инвестируемый капитал равен Р,
требуемая доходность — г
(в долях единицы). Считается, что инвестиция
сделана на условиях простого
процента,
если инвестированный капитал ежегодно
увеличивается на величину Рг.
Таким образом, размер инвестированного
капитала (R„)
через
и лет будет равен
Считается, что инвестиция сделана на условиях сложною процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей ранее начисленные и не востребованные инвестором проценты. В этом случае происходит капитализация процентов по мере их начисления, т. е. база, с которой начисляются проценты, все время возрастает. Следовательно, размер инвестированного капитала будет равен
Как же соотносятся величины R„ и FVn? Это чрезвычайно важно знать при проведении финансовых операций. Все зависит от величины п. Сравним множители наращения по простым и сложным процентам, т. е. сравним (1 + пг) и (1 + г)”. Очевидно, что при п — 1 эти множители совпадают и равны (1 + г). Можно пока-
Рис.
6.2.
Простая и сложная схемы наращения
капитала
Таким образом, в случае ежегодного начисления процентов для лица, предоставляющего кредит:
более выгодной является схема простых процентов, если срок ссуды менее одного года (проценты начисляются однократно в конце периода):
более выгодной является схема сложных процентов, если срок ссуды превышает один год (проценты начисляются ежегодно);
обе схемы дают одинаковые результаты при продолжительности периода 1 год и однократном начислении процентов.
В случае краткосрочных ссуд со сроком погашения до одного года в качестве показателя п берется величина, характеризующая удельный вес длины подиериода (дни, месяц, квартал, полугодие) в общем периоде (год). Длина различных временных интервалов в расчетах может округляться: месяц — 30 дней; квартал — 90 дней; полугодие — 180 дней; год — 360 (365 или 366) дней.
Пример
Рассчитать наращенную сумму с исходной суммы в 1 тыс. долл. при размещении ее в банке на условиях начисления простых и сложных процентов, если: а) годовая ставка 20%; б) периоды наращения: 90 дней, 180 дней, 1 год, 5 лет, 10 лет. Полагать, что в году 360 дней.
Результаты расчетов имеют следующий вид.
Таким
образом, если денежные средства размещены
в банке на срок 90 дней (менее одного
года), то наращенная сумма составит:
при использовании схемы
Использование в расчетах сложного процента в случае многократного его начисления более логично, поскольку в этом случае капитал, генерирующий доходы, постоянно возрастает. При применении простого процента доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных проектах или текущей деятельности.
Итак, формула наращения по схеме сложных процентов имеет вид
Множитель FMl(r, п) = (1 + г)” инвариантен по отношению к суммовым величинам, а потому для удобства пользования его можно табулировать для различных комбинаций г и п (см. Приложение 3), Этот множитель называется мультиплицирующим множителем для единичного платежа. Формула сложных процентов является одной из базовых формул в финансовых вычислениях.
Экономический смысл множителя FM 1(г, п): он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т. п.) через п периодов при заданной процентной ставке г, т. е. он оценивает будущую стоимость одной денежной единицы. Подчеркнем, что при пользовании этой и последующими финансовыми таблицами необходимо следить за соответствием длины периода и процентной ставки. Так, если базисным периодом начисления процентов является квартал, то в расчетах должна использоваться квартальная ставка.
следующем: если г — процентная ставка, выраженная в процентах, то
представляет собой число периодов, за которое исходная сумма приблизительно удвоится. Это правило хорошо срабатывает для небольших значений г (до 20%). Так, если годовая ставка г = 12%, то к = 6 годам. Подчеркнем, что здесь речь идет о периодах начисления процентов и соответствующей данному периоду ставке. Если базисным периодом, т. е. периодом наращения, является половина года, то в расчете должна использоваться полугодовая ставка. Следует также обратить внимание на то, что хотя в большинстве финансовых расчетов процентная ставка берется в долях единицы, в формуле алгоритма правила 72-х ставка взята в процентах.