Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1527.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
6.31 Mб
Скачать

7. Похідні вищих порядків

Похідною другого порядку від функції y=f(x) називається похідна від її першої похідної,тобто

і т.д.

Для похідних n-го порядку справедливі наведені нижче формули. В них покладено, що u=u(x), v=v(x), C=const.

1.

2.

3. - формула Лейбніца. Тут , ,

Наведемо також вирази для похідних n–го порядку від деяких функцій:

8. Функція задана неявно та її похідна. Функція, задана у вигляді рівняння F(x; y) = 0 (9.5) називається заданою неявно.

Наприклад:

Правило знаходження похідної:

1. Знаходимо похідну лівої і правої частини, вважаючи х – аргументом , у – функцією від х:

у = у(х);

2. Одержане алгебраїчне рівняння розв’язуємо відносно відомого :

;

Похідні вищих порядків функції, що задана неявно. Нехай функція y=f(x) задана неявно рівнянням

F(x,y)=0

Продиференціювавши обидві частини цього рівняння по змінній x,вважаючи, що y=f(x), отримаємо рівняння першого степеня відносно , тобто

Звідси знаходимо .

Продиференціювавши обидві частини останнього рівняння по x, вважаючи, що y та функції від x,отримаємо рівняння відносно ,тобто

,

і т.д.

9. Похідна степенево-показникової функції.

Приклад:

  1. Похідна функції, заданої параметрично.

Функція, задана системою рівнянь виду , де t називають заданою параметрично (t – параметр).

Наприклад:

Похідна другого порядку для функції, заданої параметрично:

Висновок:

Приклад. Знайти від функції, заданої параметрично

Питання для самоперевірки

  1. Дайте означення похідної. Наведіть її механічний, геометричний та економічний зміст.

  2. Наведіть формули похідних сумми, добутку та частки двох функцій.

  3. Сформулюйте означення дифененціала. Який його геометричний зміст.

  4. Як застосовується диференціал у наближених обчисленнях?

  5. Дайте означення похідної n-го порядку.

  6. Як знаходяться похідні першого та другого порядку від функції, заданої параметрично?

  7. Як знаходяться похідні першого та другого порядку від функції, заданої неявно рівнянням F(x,y)=0?

Завдання для самостійного розв’язання

  • Знайти похідні першого порядку

  • Знайти диференціали першого порядку функцій

  • Знайти похідні першого порядку функцій, заданих неявно

  • Знайти похідні першого порядку функцій, заданих параметрично

Контрольні завдання

  • Знайти похідні від заданих функцій.

  • Знайти похідні від функцій y, заданих неявно.

  • Знайти похідні від функцій y, заданих параметрично.

  • Знайти похідні другого порядку від заданих функцій.

  • Знайти похідні другого порядку від функцій,заданих неявно.

  • Знайти похідні другого порядку від функцій, заданих параметрично.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]