Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электротехника -Самостоятельно-2 часть.doc
Скачиваний:
0
Добавлен:
23.01.2020
Размер:
259.07 Кб
Скачать

2.2. Действующее значение переменного тока и напряжения

Для сравнения действий постоянного и переменного токов вводят понятие действующее значение переменного тока.

Действующее значение переменного тока численно равно такому постоянному току, при котором за время равное одному периоду в проводнике с сопротивлением R выделяется такое же количество тепловой энергии, как и при переменном токе.

Определим количество энергии, выделяемой за период в проводнике с сопротивлением R для каждого из токов и приравняем их.

(2.6)

Из (2.6) следует:

Для любой из синусоидальных величин получаем

; .

Условились, что все измерительные приборы показывают действующие значения. Например, 220 В – действующее значение, тогда .

2.3. Элементы электрической цепи синусоидального тока Индуктивность

Вокруг всякого проводника с током образуется магнитное поле, которое характеризуется вектором магнитной индукции В и магнитным потоком Ф:

.

Если поле образуют несколько (w) проводников с одинаковым током, то используют понятие потокосцепления ψ

(2.7)

ψ = w Ф.

Отношение потокосцепления к току, который его создает называют индуктивностью катушки

(2.8)

L = ψ / i.

При изменении во времени потокосцепления согласно закону Фарадея возникает ЭДС самоиндукции

eL = - dψ / dt.

С учетом соотношения (2.8) для eL получаем

(2.9)

eL = - L · di / dt.

Эта ЭДС всегда препятствует изменению тока (закон Ленца). Поэтому, чтобы через проводники все время тек ток, необходимо к проводникам прикладывать компенсирующее напряжение

(2.10)

uL = -eL.

Сопоставляя уравнения (2.9) и (2.10) получаем

(2.11)

uL = L · di / dt

Это соотношение является аналогом закона Ома для индуктивности. Конструктивно индуктивность выполняется в виде катушки с проводом.

Условное обозначение индуктивности

Катушка с проводом кроме свойства создавать магнитное поле обладает активным сопротивлением R.

Условное обозначение реальной индуктивности.

Единицей измерения индуктивности является Генри (Гн). Часто используют дробные единицы

1 мкГн = 10–6 Гн; 1 мкГн = 10–3 Гн.

Емкость

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

C = Q / UC.

С учетом соотношения

i = dQ / dt

получаем формулу связи тока с напряжением

i = C · duC / dt.

Для удобства ее интегрируют и получают

(2.12)

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10–12 Ф, (пФ – пикофарада); 1 нФ = 10–9 Ф, (нФ – нанофарада); 1 мкФ = 10–6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ

2.4. Основные свойства простейших цепей переменного тока

Простейшие цепи – цепи, содержащие один элемент.

1. Участок цепи, содержащий активное сопротивление (рис. 2.6).

Рис. 2.6

Зададимся изменением тока в резисторе по синусоидальному закону

i(t) = ImR sin(ωt + ψi).

Воспользуемся законом Ома для мгновенных значений тока и напряжения

u(t) = R i(t)

и получим

(2.13)

u(t) = R ImR sin(ωt + ψi).

Формальная запись синусоидального напряжения имеет вид

(2.14)

u(t) = UmR sin(ωt + ψu)

Соотношения (2.13) и (2.14) будут равны если будут выполнены условия равенства амплитуд и фаз

(2.15)

UmR = R ImR,

(2.16)

ψu = ψi.

Соотношение (2.15) может быть записано для действующих значений

(2.17)

UR = R IR.

Соотношение (2.16) показывает, что фазы напряжения и тока в резисторе совпадают. Графически это представлено на временной диаграмме (рис. 2.7) и на комплексной плоскости (рис. 2.8).

Рис. 2.7 и 2.8