
- •Глава 1. Теория надежности и ее фундаментальные
- •Глава 2. Критерии надежности. Законы
- •Глава 3. Проблемы анализа надежности сложных технических систем
- •Глава 4. Математические модели функционирования технических элементов и систем в смысле их надежности
- •Глава 5. Методы анализа надежности технических систем
- •Введение
- •Глава 1 фундаментальные понятия и определения теория надежности
- •Теория надежности как наука и научная дисциплина
- •1.2. Определение понятия "надежность"
- •4.3. Понятие "отказ". Классификация и характеристики отказов
- •1.4. Надежность и сохраняемость
- •1.5. Терминология теории надежности
- •1.6. Классификация технических систем
- •Глава 2 критерии надежности. Законы распределений времени до отказа
- •2.1. Что такое критерий и показатель надежности
- •2.2. Критерии надежности невосстанавливаемых систем
- •2.2.1. Вероятность безотказной работы
- •2.2.2. Плотность распределения времени безотказной работы (частота отказов)
- •2.2.3. Интенсивность отказов
- •2.2.4. Среднее время безотказной работы
- •2.3. Критерии надежности восстанавливаемых систем
- •2.3.1. Среднее время работы между отказами и среднее время восстановления
- •Параметр потока отказов
- •2.3.3. Функция готовности и функция простоя
- •2.4. Законы распределения времени до отказа, наиболее часто используемые в теории надежности
- •2.5. Преобразование Лапласа
- •2.6. Специальные показатели надежности элементов и систем
- •2.6.1. Показатели надежности элемента
- •2.6.2. Стационарные значения показателей надежности элемента
- •2.6.3. Показатели надежности невосстанавливаемой и восстанавливаемой техники
- •2.6.4. Основное уравнение функционирования системы
- •Глава 3 проблемы анализа надежности сложных технических систем
- •3.1. Научное обоснование критериев и показателей надежности
- •3.2. Разработка моделей функционирования сложной системы
- •3.3. Методы анализа надежности технических систем
- •3.3.1. Обзор существующих методов расчета надежности сложных систем
- •3.3.2. Причины неэкспоненциальности случайных параметров, отказов и восстановлений технических систем
- •3.3.3. Зависимость показателей надежности от законов распределения и дисциплины восстановления элементов
- •3.3.4. Критичное влияние произвольных распределений отказов и восстановлений на нестационарные показатели надежности
- •3.3.5. Методы и проблемы расчета надежности систем с большим числом состояний
- •3.3.6. Проблемы расчета надежности реконфигурируемых систем
- •3.4. Проблемы создания высоконадежных систем
- •3.4.1. Основная проблема надежности технических систем
- •3.4.2. Технические проблемы обеспечения надежности сложных систем
- •3.5. Краткие замечания, касающиеся проблем анализа надежности систем
- •Глава 4 математические модели функционирования технических элементов и систем в смысле их надежности
- •4.1. Общая модель надежности технического элемента
- •4.2. Общая модель надежности систем в терминах интегральных уравнений
- •4.2.1«Основные обозначения и допущения
- •4.2.2. Матрица состояний
- •4.2.3. Матрица переходов
- •4.2.4. Выражения для вероятностей состояний и параметров переходов между состояниями
- •4.2.5. Правило составления системы интегральных уравнений
- •4.3. Общая модель функционирования системы в смысле надежности в терминах дифференциальных уравнений в частных производных
- •4.4. Модель надежности стационарного режима
- •4.5. Модели надежности невосстанавливаемых систем
- •4.6. Модели надежности систем при экспоненциальных законах распределения отказов и восстановлений элементов
- •Глава 5 методы анализа надежности технических систем
- •5.1. Способы описания функционирования технических систем в смысле их надежности
- •5.1.1. Структурная схема системы
- •5.1.2. Функции алгебры логики
- •5.1.3. Матрица состояний системы
- •5.1.4. Граф состояний системы
- •5.1.5. Формализованный способ построения графа состояний системы
- •5.1.6. Описание функционирования системы с помощью уравнений типа массового обслуживания
- •5.1.7. Описание функционирования системы с помощью интегральных уравнений
- •5.2. Методы анализа надежности технических систем, основанные на применении теорем теории вероятностей
- •5.2.1. Метод перебора гипотез
- •5.2.2. Метод, основанный на применении классических теорем теории вероятностей
- •5.2.3. Метод минимальных путей и минимальных сечений
- •5.3. Логико-вероятностные методы анализа надежности
- •5.3.1. Сущность логико-вероятностных методов
- •5.3.2. Метод кратчайших путей и минимальных сечений
- •5.3.3. Алгоритм разрезания
- •5.3.4. Алгоритм ортогонализации
- •5.4. Топологические методы анализа надежности
- •5.4.1. Определение вероятностей состояний системы
- •5.4.2. Определение финальных вероятностей состояний системы
- •5.4.3. Определение вероятности попадания системы в I-е состояние в течение времени t
- •5.4.4. Определение количественных характеристик надежности по графу состояний
5.3.2. Метод кратчайших путей и минимальных сечений
Этот метод был рассмотрен ранее в разд. 5.2.3. Изложим его с позиции алгебры логики.
Функцию работоспособности можно описать с помощью кратчайших путей пешного функционирования системы и минимальных сечений ее отказа.
Кратчайшим путем называется минимальная конъюнкция работоспособных :стояний элементов, образующих работоспособную систему.
Минимальным сечением называется минимальная конъюнкция неработоспособных состояний элементов, образующих неработоспособное состояние системы.
ПРИМЕР 5.13. Необходимо образовать функцию работоспособности системы структурная схема которой приведена на рис. 5.17, используя метод кратчайших путей и минимальных сечений.
Решение. В данном случае кратчайшими путями, образующими работоспособную систему, будут: х1х2, х3х4,, х1х5х4, х3х5х2. Тогда функция работоспособности запишется в виде следующей функции алгебры логики:
В соответствии с этой ФАЛ структурная схема системы рис. 5.17 может быть представлена структурной схемой рис. 5.18.
Минимальными сечениями, образующими неработоспособную систему, будут: х1х3, х2х4,, х1х5х4, х3х5х2. Тогда функция неработоспособности запишется в виде следующей функции алгебры логики:
В соответствии с этой ФАЛ структурная схема системы будет представлена в виде, показанном на рис. 5.19.
Следует иметь в виду, что структурные схемы рис. 5.18 и рис. 5.19 не являются схемами расчета надежности, а выражения для ФАЛ работоспособного и неработоспособного состояний не являются выражениями для определения вероятности безотказной работы и вероятности отказа:
Основные достоинства ФАЛ в том, что они позволяют получить формально, не составляя таблицы истинности, СДНФ и СКНФ (совершенная конъюнктивная нормальная форма), которые дают возможность получить вероятность безотказной работы (вероятность отказа) системы путем подстановки в ФАЛ вместо логических переменных соответствующих значений вероятностей безотказной работы, заменив операции конъюнкции и дизъюнкции на алгебраические операции умножения и сложения.
Для
получения СДНФ необходимо каждый
дизъюнктивный член ФАЛ умножить на
,
где хi
—
недостающий аргумент, и раскрыть скобки.
Ответом
будет СДНФ. Рассмотрим этот способ на
примере.
ПРИМЕР 5.14. Необходимо определить вероятность безотказной работы системы, структурная схема которой приведена на рис. 5.17. Вероятности безотказной работы элементов равны р1, р2, р3, р4, р5.
Решение. Воспользуемся методом кратчайших путей. Функция алгебры логики, полученная методом кратчайших путей, имеет вид:
Получим СДНФ системы. Для этого умножим дизъюнктивные члены на недостающие :
Раскрывая скобки и выполняя преобразования по правилам алгебры логики, получим СДНФ:
Подставляя в СДНФ вместо х1, х2, х3, х4, х5 вероятности безотказной работы р1, р2, р3, р4, р5 и используя соотношения qi = 1–рi, получим следующее выражение для вероятности безотказной работы системы.
Из приведенного примера видно, что метод кратчайших путей освободил нас от определения благоприятных гипотез. Тот же результат можно получить, если воспользоваться методом минимальных сечений.