
- •Глава 1. Теория надежности и ее фундаментальные
- •Глава 2. Критерии надежности. Законы
- •Глава 3. Проблемы анализа надежности сложных технических систем
- •Глава 4. Математические модели функционирования технических элементов и систем в смысле их надежности
- •Глава 5. Методы анализа надежности технических систем
- •Введение
- •Глава 1 фундаментальные понятия и определения теория надежности
- •Теория надежности как наука и научная дисциплина
- •1.2. Определение понятия "надежность"
- •4.3. Понятие "отказ". Классификация и характеристики отказов
- •1.4. Надежность и сохраняемость
- •1.5. Терминология теории надежности
- •1.6. Классификация технических систем
- •Глава 2 критерии надежности. Законы распределений времени до отказа
- •2.1. Что такое критерий и показатель надежности
- •2.2. Критерии надежности невосстанавливаемых систем
- •2.2.1. Вероятность безотказной работы
- •2.2.2. Плотность распределения времени безотказной работы (частота отказов)
- •2.2.3. Интенсивность отказов
- •2.2.4. Среднее время безотказной работы
- •2.3. Критерии надежности восстанавливаемых систем
- •2.3.1. Среднее время работы между отказами и среднее время восстановления
- •Параметр потока отказов
- •2.3.3. Функция готовности и функция простоя
- •2.4. Законы распределения времени до отказа, наиболее часто используемые в теории надежности
- •2.5. Преобразование Лапласа
- •2.6. Специальные показатели надежности элементов и систем
- •2.6.1. Показатели надежности элемента
- •2.6.2. Стационарные значения показателей надежности элемента
- •2.6.3. Показатели надежности невосстанавливаемой и восстанавливаемой техники
- •2.6.4. Основное уравнение функционирования системы
- •Глава 3 проблемы анализа надежности сложных технических систем
- •3.1. Научное обоснование критериев и показателей надежности
- •3.2. Разработка моделей функционирования сложной системы
- •3.3. Методы анализа надежности технических систем
- •3.3.1. Обзор существующих методов расчета надежности сложных систем
- •3.3.2. Причины неэкспоненциальности случайных параметров, отказов и восстановлений технических систем
- •3.3.3. Зависимость показателей надежности от законов распределения и дисциплины восстановления элементов
- •3.3.4. Критичное влияние произвольных распределений отказов и восстановлений на нестационарные показатели надежности
- •3.3.5. Методы и проблемы расчета надежности систем с большим числом состояний
- •3.3.6. Проблемы расчета надежности реконфигурируемых систем
- •3.4. Проблемы создания высоконадежных систем
- •3.4.1. Основная проблема надежности технических систем
- •3.4.2. Технические проблемы обеспечения надежности сложных систем
- •3.5. Краткие замечания, касающиеся проблем анализа надежности систем
- •Глава 4 математические модели функционирования технических элементов и систем в смысле их надежности
- •4.1. Общая модель надежности технического элемента
- •4.2. Общая модель надежности систем в терминах интегральных уравнений
- •4.2.1«Основные обозначения и допущения
- •4.2.2. Матрица состояний
- •4.2.3. Матрица переходов
- •4.2.4. Выражения для вероятностей состояний и параметров переходов между состояниями
- •4.2.5. Правило составления системы интегральных уравнений
- •4.3. Общая модель функционирования системы в смысле надежности в терминах дифференциальных уравнений в частных производных
- •4.4. Модель надежности стационарного режима
- •4.5. Модели надежности невосстанавливаемых систем
- •4.6. Модели надежности систем при экспоненциальных законах распределения отказов и восстановлений элементов
- •Глава 5 методы анализа надежности технических систем
- •5.1. Способы описания функционирования технических систем в смысле их надежности
- •5.1.1. Структурная схема системы
- •5.1.2. Функции алгебры логики
- •5.1.3. Матрица состояний системы
- •5.1.4. Граф состояний системы
- •5.1.5. Формализованный способ построения графа состояний системы
- •5.1.6. Описание функционирования системы с помощью уравнений типа массового обслуживания
- •5.1.7. Описание функционирования системы с помощью интегральных уравнений
- •5.2. Методы анализа надежности технических систем, основанные на применении теорем теории вероятностей
- •5.2.1. Метод перебора гипотез
- •5.2.2. Метод, основанный на применении классических теорем теории вероятностей
- •5.2.3. Метод минимальных путей и минимальных сечений
- •5.3. Логико-вероятностные методы анализа надежности
- •5.3.1. Сущность логико-вероятностных методов
- •5.3.2. Метод кратчайших путей и минимальных сечений
- •5.3.3. Алгоритм разрезания
- •5.3.4. Алгоритм ортогонализации
- •5.4. Топологические методы анализа надежности
- •5.4.1. Определение вероятностей состояний системы
- •5.4.2. Определение финальных вероятностей состояний системы
- •5.4.3. Определение вероятности попадания системы в I-е состояние в течение времени t
- •5.4.4. Определение количественных характеристик надежности по графу состояний
5.3. Логико-вероятностные методы анализа надежности
5.3.1. Сущность логико-вероятностных методов
Любой метод анализа надежности требует описания условий работоспособности системы. Такие условия могут быть сформулированы на основании:
- структурной схемы функционирования системы (схемы расчета надежности);
- словесного описания функционирования системы;
- граф-схемы;
- функции алгебры логики.
Логико-вероятностный метод анализа надежности позволяет формализовать определение и смысл благоприятных гипотез. Сущность этого метода состоит в следующем.
Состояние каждого элемента кодируется нулем и единицей:
В функциях алгебры логики состояния элементов представляются в следующем виде:
хi — исправное состояние элемента, соответствующее коду 1;
— отказовое состояние элемента, соответствующее коду 0.
Записывается с помощью функций алгебры логики условие работоспособности системы через работоспособность (состояние) ее элементов. Полученная функция работоспособности системы является двоичной функцией двоичных, аргументов.
Полученная ФАЛ преобразуется таким образом, чтобы в ней содержались члены, соответствующие благоприятным гипотезам исправной работы системы.
В ФАЛ вместо двоичных переменных хi и подставляются вероятности соответственно безотказной работы рi и вероятности отказа qi. Знаки конъюнкции и дизъюнкции заменяются алгебраическими умножением и сложением.
Полученное выражение и есть вероятность безотказной работы системы Pc(t).
Рассмотрим логико-вероятностный метод на примерах.
ПРИМЕР 5.10. Структурная схема системы представляет собой основное (последовательное) соединение элементов (рис. 5.14).
На структурной схеме хi, i = 1, 2,..., п — состояние i-го элемента системы, кодируемое 0, если элемент находится в отказовом состоянии, и 1, если он исправный. В данном случае система исправна, если исправны все ее элементы. Тогда ФАЛ является конъюнкцией логических переменных, т.е. у=x1,x2,…..,хп, представляющей собой совершенную дизъюнктивно нормальную форму системы.
Подставляя вместо логических переменных вероятности исправных состояний элементов и, заменяя конъюнкцию на алгебраическое умножение, получим:
ПРИМЕР 5.11. Структурная схема системы представляет собой дублированную систему с неравнонадежными, постоянно включенными подсистемами (рис. 5.15).
На рис. 5.15 х1 и х2 — состояния элементов системы. Составим таблицу истинности двух двоичных переменных (табл. 5.2).
В таблице 0 — отказовое состояние элемента, 1 — исправное состояние элемента. В данном случае система исправна, если исправны оба элемента (1,1) или один из них ((0,1) или (1,0)). Тогда работоспособное состояние системы описывается следующей функцией алгебры логики:
Эта функция является совершенной дизъюнктивной нормальной формой. Заменяя операции дизъюнкции и конъюнкции на алгебраические операции умножения и сложения, а логические переменные — на соответствующие вероятности состояния элементов, получим вероятность безотказной работы системы:
ПРИМЕР 5.12. Структурная схема системы имеет вид, показанный на рис. 5.16.
Составим таблицу истинности (табл. 53).
В данном примере система исправна, если исправны все ее элементы или исправным является элемент xi и один из элементов дублированной пары (х2, х3). На основании таблицы истинности СДНФ будет иметь вид:
Подставляя вместо двоичных переменных соответствующие вероятности, а вместо конъюнкций и дизъюнкций — алгебраические умножение и сложение, получим вероятность безотказной работы системы:
Функцию алгебры логики можно представить в минимальной форме, если воспользоваться следующими преобразованиями:
Операции поглощения и склеивания в алгебре не применимы. В связи с этим нельзя полученную ФАЛ минимизировать, а затем вместо логических переменных подставлять значения вероятностей. Вероятности состояний элементов следует подставлять в СДНФ, а упрощать по правилам алгебры.
Недостатком описанного метода является необходимость составления таблицы истинности, что требует перебора всех работоспособных состояний системы.