
- •Глава 1. Теория надежности и ее фундаментальные
- •Глава 2. Критерии надежности. Законы
- •Глава 3. Проблемы анализа надежности сложных технических систем
- •Глава 4. Математические модели функционирования технических элементов и систем в смысле их надежности
- •Глава 5. Методы анализа надежности технических систем
- •Введение
- •Глава 1 фундаментальные понятия и определения теория надежности
- •Теория надежности как наука и научная дисциплина
- •1.2. Определение понятия "надежность"
- •4.3. Понятие "отказ". Классификация и характеристики отказов
- •1.4. Надежность и сохраняемость
- •1.5. Терминология теории надежности
- •1.6. Классификация технических систем
- •Глава 2 критерии надежности. Законы распределений времени до отказа
- •2.1. Что такое критерий и показатель надежности
- •2.2. Критерии надежности невосстанавливаемых систем
- •2.2.1. Вероятность безотказной работы
- •2.2.2. Плотность распределения времени безотказной работы (частота отказов)
- •2.2.3. Интенсивность отказов
- •2.2.4. Среднее время безотказной работы
- •2.3. Критерии надежности восстанавливаемых систем
- •2.3.1. Среднее время работы между отказами и среднее время восстановления
- •Параметр потока отказов
- •2.3.3. Функция готовности и функция простоя
- •2.4. Законы распределения времени до отказа, наиболее часто используемые в теории надежности
- •2.5. Преобразование Лапласа
- •2.6. Специальные показатели надежности элементов и систем
- •2.6.1. Показатели надежности элемента
- •2.6.2. Стационарные значения показателей надежности элемента
- •2.6.3. Показатели надежности невосстанавливаемой и восстанавливаемой техники
- •2.6.4. Основное уравнение функционирования системы
- •Глава 3 проблемы анализа надежности сложных технических систем
- •3.1. Научное обоснование критериев и показателей надежности
- •3.2. Разработка моделей функционирования сложной системы
- •3.3. Методы анализа надежности технических систем
- •3.3.1. Обзор существующих методов расчета надежности сложных систем
- •3.3.2. Причины неэкспоненциальности случайных параметров, отказов и восстановлений технических систем
- •3.3.3. Зависимость показателей надежности от законов распределения и дисциплины восстановления элементов
- •3.3.4. Критичное влияние произвольных распределений отказов и восстановлений на нестационарные показатели надежности
- •3.3.5. Методы и проблемы расчета надежности систем с большим числом состояний
- •3.3.6. Проблемы расчета надежности реконфигурируемых систем
- •3.4. Проблемы создания высоконадежных систем
- •3.4.1. Основная проблема надежности технических систем
- •3.4.2. Технические проблемы обеспечения надежности сложных систем
- •3.5. Краткие замечания, касающиеся проблем анализа надежности систем
- •Глава 4 математические модели функционирования технических элементов и систем в смысле их надежности
- •4.1. Общая модель надежности технического элемента
- •4.2. Общая модель надежности систем в терминах интегральных уравнений
- •4.2.1«Основные обозначения и допущения
- •4.2.2. Матрица состояний
- •4.2.3. Матрица переходов
- •4.2.4. Выражения для вероятностей состояний и параметров переходов между состояниями
- •4.2.5. Правило составления системы интегральных уравнений
- •4.3. Общая модель функционирования системы в смысле надежности в терминах дифференциальных уравнений в частных производных
- •4.4. Модель надежности стационарного режима
- •4.5. Модели надежности невосстанавливаемых систем
- •4.6. Модели надежности систем при экспоненциальных законах распределения отказов и восстановлений элементов
- •Глава 5 методы анализа надежности технических систем
- •5.1. Способы описания функционирования технических систем в смысле их надежности
- •5.1.1. Структурная схема системы
- •5.1.2. Функции алгебры логики
- •5.1.3. Матрица состояний системы
- •5.1.4. Граф состояний системы
- •5.1.5. Формализованный способ построения графа состояний системы
- •5.1.6. Описание функционирования системы с помощью уравнений типа массового обслуживания
- •5.1.7. Описание функционирования системы с помощью интегральных уравнений
- •5.2. Методы анализа надежности технических систем, основанные на применении теорем теории вероятностей
- •5.2.1. Метод перебора гипотез
- •5.2.2. Метод, основанный на применении классических теорем теории вероятностей
- •5.2.3. Метод минимальных путей и минимальных сечений
- •5.3. Логико-вероятностные методы анализа надежности
- •5.3.1. Сущность логико-вероятностных методов
- •5.3.2. Метод кратчайших путей и минимальных сечений
- •5.3.3. Алгоритм разрезания
- •5.3.4. Алгоритм ортогонализации
- •5.4. Топологические методы анализа надежности
- •5.4.1. Определение вероятностей состояний системы
- •5.4.2. Определение финальных вероятностей состояний системы
- •5.4.3. Определение вероятности попадания системы в I-е состояние в течение времени t
- •5.4.4. Определение количественных характеристик надежности по графу состояний
3.4. Проблемы создания высоконадежных систем
3.4.1. Основная проблема надежности технических систем
Сложные технические системы должны длительное время работать безотказно. Это требование диктуется необходимостью обеспечения высокой их эффективности, безопасности, живучести, готовности и других показателей качества.
Сложные системы состоят из десятков и сотен тысяч элементов, а время их работы исчисляется тысячами часов.
К таким системам предъявляются высокие требования по надежности. Например, вероятность безотказной работы Р(t)≥0,99, коэффициент готовности Kг≥0,98. Удовлетворяют ли таким требованиям современные технические системы?
Пусть система состоит из n = 1000 элементов, длительность ее работы — 2000 час, элементы, из которых состоит система, высоконадежны, имеют постоянную интенсивность отказов, среднее значение которой λ = 0,2 10-6 час-1.
Вероятность безотказной работы такой системы будет:
Такая система эксплуатироваться не может по причине низкой надежности: вероятность ее отказа превосходит требуемую (q = 0,01) в 33 раза. Для повышения ее надежности применим структурное резервирование. Расчеты показывают, что для обеспечения вероятности безотказной работы системы Рс(2000) = 0,99 необходимо иметь 5 резервных систем в случае резервирования с постоянно включенным резервом и две резервные системы в случае резервирования замещением при условии, что автомат контроля и коммутации, обеспечивающий подключение резервной системы при отказе основной, идеальный в смысле надежности.
Существенно повысить работоспособность системы может восстановление резервированной системы при условии, что ремонт осуществляется без выключения системы. Расчеты показывают, что вероятность безотказной работы системы Рс(2000) = 0,99 можно обеспечить при восстановлении дублированной системы со средним временем восстановления Tв≤100 час. При Tв = 100 час Рс(2000) = 0,993.
Однако такой метод не всегда возможен. Нельзя ремонтировать двигатель или систему управления самолета в полете, спутника связи на орбите, океанский лайнер в плавании. Нельзя осуществлять ремонт техники в ее рабочем состоянии, если ремонт должен осуществляться в специальных мастерских. Следует также иметь в виду, что техническая реализация этого способа требует наличия системы диагностики отказов, что может привести к понижению надежности резервированной системы. Не следует также забывать, что резервирование существенно повышает стоимость системы, ее вес и габариты. В нашем случае при применении резервирования стоимость системы возрастет в 6 раз при общем резервировании и в 3 раза при резервировании замещением. На практике резервирование с восстановлением применяется редко. Причин для этого достаточно.
Надежность элементов непрерывно увеличивается. Появление материалов высокой прочности, защищенных от коррозии, твердых схем, не требующих большой энергии для их питания, существенно уменьшили интенсивность отказов элементов. Однако сложность технических систем и требования к показателям их надежности растут с такой же скоростью, как и надежность элементов. Поэтому надежность многих сложных технических систем практически не растет. В этом основная проблема надежности техники.