
- •Глава 1. Теория надежности и ее фундаментальные
- •Глава 2. Критерии надежности. Законы
- •Глава 3. Проблемы анализа надежности сложных технических систем
- •Глава 4. Математические модели функционирования технических элементов и систем в смысле их надежности
- •Глава 5. Методы анализа надежности технических систем
- •Введение
- •Глава 1 фундаментальные понятия и определения теория надежности
- •Теория надежности как наука и научная дисциплина
- •1.2. Определение понятия "надежность"
- •4.3. Понятие "отказ". Классификация и характеристики отказов
- •1.4. Надежность и сохраняемость
- •1.5. Терминология теории надежности
- •1.6. Классификация технических систем
- •Глава 2 критерии надежности. Законы распределений времени до отказа
- •2.1. Что такое критерий и показатель надежности
- •2.2. Критерии надежности невосстанавливаемых систем
- •2.2.1. Вероятность безотказной работы
- •2.2.2. Плотность распределения времени безотказной работы (частота отказов)
- •2.2.3. Интенсивность отказов
- •2.2.4. Среднее время безотказной работы
- •2.3. Критерии надежности восстанавливаемых систем
- •2.3.1. Среднее время работы между отказами и среднее время восстановления
- •Параметр потока отказов
- •2.3.3. Функция готовности и функция простоя
- •2.4. Законы распределения времени до отказа, наиболее часто используемые в теории надежности
- •2.5. Преобразование Лапласа
- •2.6. Специальные показатели надежности элементов и систем
- •2.6.1. Показатели надежности элемента
- •2.6.2. Стационарные значения показателей надежности элемента
- •2.6.3. Показатели надежности невосстанавливаемой и восстанавливаемой техники
- •2.6.4. Основное уравнение функционирования системы
- •Глава 3 проблемы анализа надежности сложных технических систем
- •3.1. Научное обоснование критериев и показателей надежности
- •3.2. Разработка моделей функционирования сложной системы
- •3.3. Методы анализа надежности технических систем
- •3.3.1. Обзор существующих методов расчета надежности сложных систем
- •3.3.2. Причины неэкспоненциальности случайных параметров, отказов и восстановлений технических систем
- •3.3.3. Зависимость показателей надежности от законов распределения и дисциплины восстановления элементов
- •3.3.4. Критичное влияние произвольных распределений отказов и восстановлений на нестационарные показатели надежности
- •3.3.5. Методы и проблемы расчета надежности систем с большим числом состояний
- •3.3.6. Проблемы расчета надежности реконфигурируемых систем
- •3.4. Проблемы создания высоконадежных систем
- •3.4.1. Основная проблема надежности технических систем
- •3.4.2. Технические проблемы обеспечения надежности сложных систем
- •3.5. Краткие замечания, касающиеся проблем анализа надежности систем
- •Глава 4 математические модели функционирования технических элементов и систем в смысле их надежности
- •4.1. Общая модель надежности технического элемента
- •4.2. Общая модель надежности систем в терминах интегральных уравнений
- •4.2.1«Основные обозначения и допущения
- •4.2.2. Матрица состояний
- •4.2.3. Матрица переходов
- •4.2.4. Выражения для вероятностей состояний и параметров переходов между состояниями
- •4.2.5. Правило составления системы интегральных уравнений
- •4.3. Общая модель функционирования системы в смысле надежности в терминах дифференциальных уравнений в частных производных
- •4.4. Модель надежности стационарного режима
- •4.5. Модели надежности невосстанавливаемых систем
- •4.6. Модели надежности систем при экспоненциальных законах распределения отказов и восстановлений элементов
- •Глава 5 методы анализа надежности технических систем
- •5.1. Способы описания функционирования технических систем в смысле их надежности
- •5.1.1. Структурная схема системы
- •5.1.2. Функции алгебры логики
- •5.1.3. Матрица состояний системы
- •5.1.4. Граф состояний системы
- •5.1.5. Формализованный способ построения графа состояний системы
- •5.1.6. Описание функционирования системы с помощью уравнений типа массового обслуживания
- •5.1.7. Описание функционирования системы с помощью интегральных уравнений
- •5.2. Методы анализа надежности технических систем, основанные на применении теорем теории вероятностей
- •5.2.1. Метод перебора гипотез
- •5.2.2. Метод, основанный на применении классических теорем теории вероятностей
- •5.2.3. Метод минимальных путей и минимальных сечений
- •5.3. Логико-вероятностные методы анализа надежности
- •5.3.1. Сущность логико-вероятностных методов
- •5.3.2. Метод кратчайших путей и минимальных сечений
- •5.3.3. Алгоритм разрезания
- •5.3.4. Алгоритм ортогонализации
- •5.4. Топологические методы анализа надежности
- •5.4.1. Определение вероятностей состояний системы
- •5.4.2. Определение финальных вероятностей состояний системы
- •5.4.3. Определение вероятности попадания системы в I-е состояние в течение времени t
- •5.4.4. Определение количественных характеристик надежности по графу состояний
3.3.6. Проблемы расчета надежности реконфигурируемых систем
Особой спецификой обладают системы с переменной структурой. В общем случае к ним можно отнести системы, характеристики надежности которых изменяются, например, из-за изменения нагрузки на систему или ее элементы, модификации структуры системы, наличия временных интервалов простоя элементов системы, изменения условий функционирования системы и т.д.
Указанные технические системы относятся к системам с реконфигурацией их структуры. Модификации в системе могут происходить как через постоянные, так и через переменные промежутки времени; они могут быть детерминированными или случайными, периодическими и непериодическими. Структура системы может изменяться потому, что меняются функции, выполняемые системой, а также с целью повышения ее надежности. Большое количество технических систем может быть интерпретировано как системы с модификациями или с переменной структурой [139].
Например, многопроцессорные системы могут изменять свою структуру в зависимости от исходных данных. То же относится и к производственным линиям, узлы которых могут выполнять различные операции в зависимости от условий их применения. Анализ подобных систем показывает, что, как правило, их модификации являются периодическими. Например, период для производственных линий может быть равен 24 часам или продолжительности производства цикла. Все модификации происходят в фиксированные моменты времени, между которыми характеристики надежности не меняются.
Анализ надежности систем со статической и динамической реконфигурацией структуры представляет собой новое направление в теории надежности сложных технических систем. Различаются системы, когда в момент изменения структуры информация о времени работы или восстановления элементов "забывается", и после момента реконфигурации система с измененной структурой начинает функционировать как новая. Это условие может быть вполне естественным для системы типа "черного ящика", о которой лишь известно, что она имеет два состояния и определены законы распределения вероятностей перехода между состояниями. Для таких систем предполагается, что допустимыми являются лишь переходы между исправными состояниями и между отказовыми состояниями. Иначе обстоит дело с системой, имеющей несколько уровней возможных состояний, а в процессе перестройки структуры системы имеются переходы между состояниями одного уровня. При этом может оказаться, что из исправного состояния система переходит в отказовое и, наоборот, из отказового — в исправное. Таким свойством как раз обладают системы типа т/п с нагруженным и ненагруженным резервом.
Сложная техническая система с позиций надежности характеризуется такой специфической особенностью функционирования, как многофункциональность. Количество выполняемых системой функций может достигать нескольких десятков. При этом в реализации одной функции может участвовать большое число модулей (элементов). Один и тот же модуль может быть задействован в выполнении нескольких функций. Поэтому модули, образующие систему, имеют различную длительность эксплуатации. Так, некоторые из них работают непрерывно, поскольку участвуют в выполнении всех функций, а некоторые модули включаются только на время выполнения какой-либо одной или нескольких функций. Многофункциональность накладывает определенный отпечаток на саму постановку задачи анализа надежности такой системы.
При изучении надежности систем, выполняющих несколько функций, как правило, применяется функциональный подход, при котором описание надежности производится по каждой функции в отдельности, а поэтому надежность системы характеризуется вектором показателей надежности всех ее функций. Таким образом, сравнительная оценка различных систем одного и того же назначения часто является затруднительной, а то и вовсе невыполнимой. Основной сложностью в исследовании многофункциональных систем, на наш взгляд, является то обстоятельство, что исследования проводятся без учета потока задач, поступающих в систему. В этом случае анализ надежности системы, функционирующей по нескольким функциям, неоднозначен, а возникающая при этом неопределенность без какой-либо дополнительной информации не поддается измерению. Выходом из этой тупиковой ситуации может служить исследование системы вместе с потоком задач, поступающих на обслуживание. Без учета потока задач можно говорить о временах использования системы по каждой функции и исследовать ее надежность с учетом времени выполнения системой всех ее функций.
Основным вопросом анализа систем с переменной структурой является разработка моделей и методов расчета характеристик их надежности, а также управление процессом модификаций с целью получения наибольшей надежности систем в соответствии с выбранными критериями.