
- •Глава 1. Теория надежности и ее фундаментальные
- •Глава 2. Критерии надежности. Законы
- •Глава 3. Проблемы анализа надежности сложных технических систем
- •Глава 4. Математические модели функционирования технических элементов и систем в смысле их надежности
- •Глава 5. Методы анализа надежности технических систем
- •Введение
- •Глава 1 фундаментальные понятия и определения теория надежности
- •Теория надежности как наука и научная дисциплина
- •1.2. Определение понятия "надежность"
- •4.3. Понятие "отказ". Классификация и характеристики отказов
- •1.4. Надежность и сохраняемость
- •1.5. Терминология теории надежности
- •1.6. Классификация технических систем
- •Глава 2 критерии надежности. Законы распределений времени до отказа
- •2.1. Что такое критерий и показатель надежности
- •2.2. Критерии надежности невосстанавливаемых систем
- •2.2.1. Вероятность безотказной работы
- •2.2.2. Плотность распределения времени безотказной работы (частота отказов)
- •2.2.3. Интенсивность отказов
- •2.2.4. Среднее время безотказной работы
- •2.3. Критерии надежности восстанавливаемых систем
- •2.3.1. Среднее время работы между отказами и среднее время восстановления
- •Параметр потока отказов
- •2.3.3. Функция готовности и функция простоя
- •2.4. Законы распределения времени до отказа, наиболее часто используемые в теории надежности
- •2.5. Преобразование Лапласа
- •2.6. Специальные показатели надежности элементов и систем
- •2.6.1. Показатели надежности элемента
- •2.6.2. Стационарные значения показателей надежности элемента
- •2.6.3. Показатели надежности невосстанавливаемой и восстанавливаемой техники
- •2.6.4. Основное уравнение функционирования системы
- •Глава 3 проблемы анализа надежности сложных технических систем
- •3.1. Научное обоснование критериев и показателей надежности
- •3.2. Разработка моделей функционирования сложной системы
- •3.3. Методы анализа надежности технических систем
- •3.3.1. Обзор существующих методов расчета надежности сложных систем
- •3.3.2. Причины неэкспоненциальности случайных параметров, отказов и восстановлений технических систем
- •3.3.3. Зависимость показателей надежности от законов распределения и дисциплины восстановления элементов
- •3.3.4. Критичное влияние произвольных распределений отказов и восстановлений на нестационарные показатели надежности
- •3.3.5. Методы и проблемы расчета надежности систем с большим числом состояний
- •3.3.6. Проблемы расчета надежности реконфигурируемых систем
- •3.4. Проблемы создания высоконадежных систем
- •3.4.1. Основная проблема надежности технических систем
- •3.4.2. Технические проблемы обеспечения надежности сложных систем
- •3.5. Краткие замечания, касающиеся проблем анализа надежности систем
- •Глава 4 математические модели функционирования технических элементов и систем в смысле их надежности
- •4.1. Общая модель надежности технического элемента
- •4.2. Общая модель надежности систем в терминах интегральных уравнений
- •4.2.1«Основные обозначения и допущения
- •4.2.2. Матрица состояний
- •4.2.3. Матрица переходов
- •4.2.4. Выражения для вероятностей состояний и параметров переходов между состояниями
- •4.2.5. Правило составления системы интегральных уравнений
- •4.3. Общая модель функционирования системы в смысле надежности в терминах дифференциальных уравнений в частных производных
- •4.4. Модель надежности стационарного режима
- •4.5. Модели надежности невосстанавливаемых систем
- •4.6. Модели надежности систем при экспоненциальных законах распределения отказов и восстановлений элементов
- •Глава 5 методы анализа надежности технических систем
- •5.1. Способы описания функционирования технических систем в смысле их надежности
- •5.1.1. Структурная схема системы
- •5.1.2. Функции алгебры логики
- •5.1.3. Матрица состояний системы
- •5.1.4. Граф состояний системы
- •5.1.5. Формализованный способ построения графа состояний системы
- •5.1.6. Описание функционирования системы с помощью уравнений типа массового обслуживания
- •5.1.7. Описание функционирования системы с помощью интегральных уравнений
- •5.2. Методы анализа надежности технических систем, основанные на применении теорем теории вероятностей
- •5.2.1. Метод перебора гипотез
- •5.2.2. Метод, основанный на применении классических теорем теории вероятностей
- •5.2.3. Метод минимальных путей и минимальных сечений
- •5.3. Логико-вероятностные методы анализа надежности
- •5.3.1. Сущность логико-вероятностных методов
- •5.3.2. Метод кратчайших путей и минимальных сечений
- •5.3.3. Алгоритм разрезания
- •5.3.4. Алгоритм ортогонализации
- •5.4. Топологические методы анализа надежности
- •5.4.1. Определение вероятностей состояний системы
- •5.4.2. Определение финальных вероятностей состояний системы
- •5.4.3. Определение вероятности попадания системы в I-е состояние в течение времени t
- •5.4.4. Определение количественных характеристик надежности по графу состояний
2.6.2. Стационарные значения показателей надежности элемента
Получим предельные значения для показателей надежности восстанавливаемого элемента, предполагая, что с течением времени процесс функционирования элемента устанавливается и приобретает стационарный характер. Будем считать в дальнейшем, что fk = f, gk = g, k = 1, 2,... с математическими ожиданиями T и Tв соответственно.
Наиболее удобным способом вычисления предельных соотношений является представление характеристик в виде преобразования Лапласа.
Из равенств (2.29) следует, что параметры потоков отказов и восстановлений в изображениях имеют вид:
Следовательно, по свойствам (4) и (5) преобразования Лапласа (см. разд. 2.5) получим:
Аналогично
Таким образом, стационарные значения параметров потоков отказов и восстановлений одинаковы и равны
Из (2.32) следует, что
Следовательно, коэффициенты готовности и простоя равны соответственно
Коэффициент готовности определяется только средним временем работы элемента до отказа и средним временем восстановления вне зависимости от законов распределения. Это означает, что Кг нельзя применять для оценки надежности технических систем кратковременного использования. Более полная информация о работе такой системы содержится в функции готовности (см. рис. 2.11).
Получим
предельные соотношения для среднего
числа отказов и восстановлений.
Вычислим предел разности
при t→∞:
Применяя свойство (5) преобразования Лапласа, подучим
где α2 и β2 — вторые начальные моменты случайных величин с плотностями f(t) и g(t) соответственно. Отсюда следует асимптотическая оцени среднего суммарного числа отказов:
Аналогично при t→∞ имеет место асимптотическая оценка среднего суммарного числа восстановлений:
Похожие рассуждения позволяют найти асимптотические оценки для средней суммарной наработки и среднего суммарного времени восстановления элемента:
Теперь легко найти предельные соотношения для интенсивностей потоков отказов и восстановлений:
Вычислим стационарные значения средней наработки между отказами и среднего времени восстановления:
Как и следует ожидать, для стационарного режима средняя наработка между отказами равна среднему времени безотказной работы элемента.
2.6.3. Показатели надежности невосстанавливаемой и восстанавливаемой техники
В разд. 2.6.1 были введены показатели надежности элементов. Определим теперь показатели надежности системы. Пусть Е — множество состояний системы, k, l ϵ E— любые два состояния множества Е. Введем в рассмотрение следующие случайные процессы и свяжем с ними определенные функции.
ζk,l(t) — число переходов системы из состояния k в состояние l в течение времени [0;t], Мk,l(t)— математическое ожидание ζk,l(t), ωk,l(t) = М’k,l(t) — параметр перехода системы в момент времени t из состояния k в состояние l;
χk(t) — суммарное время пребывания системы в состоянии k в течение времени [0;t], mk(t) — математическое ожидание χk(t), pk(t) = m’k(t) — вероятность пребывания системы в момент времени t в состоянии k .
Определим теперь случайные процессы и некоторые производные от их функции для подмножеств состояний множества Е, где е и f — любые непересекающиеся подмножества множества состояний Е:
ζe,f(t) — число переходов системы из состояний множества е в состояния множества f в течение времени [0,t], Me,f(t) — математическое ожидание ζe,f(t), ωe,f(t) = М'e,f(t) — параметр перехода в момент времени t из множества состояний е в множество состояний f;
χe(t)— суммарное время пребывания системы в состояниях множества e в течение времени [0;t], те(t)— математическое ожидание χe(t), pe(t) = m’e(t)— вероятность пребывания в момент времени t в каком-либо состоянии множества е.
Случайные процессы ζe,f(t) и χe(t) являются базовыми, поскольку через них может быть получена вся информация о работе системы с позиции теории надежности. Так, например, математические ожидания этих процессов позволяют определить среднее время Тe,f(t)е>/(1) пребывания системы в множестве е до перехода в множество f в течение времени [0;t]:
Интенсивность перехода системы в момент времени t из множества е в множество f определяется отношением:
Укажем формулы связи между показателями, характеризующими множества состояний из Е и отдельные состояния множества Е: