- •Глава 1. Теория надежности и ее фундаментальные
- •Глава 2. Критерии надежности. Законы
- •Глава 3. Проблемы анализа надежности сложных технических систем
- •Глава 4. Математические модели функционирования технических элементов и систем в смысле их надежности
- •Глава 5. Методы анализа надежности технических систем
- •Введение
- •Глава 1 фундаментальные понятия и определения теория надежности
- •Теория надежности как наука и научная дисциплина
- •1.2. Определение понятия "надежность"
- •4.3. Понятие "отказ". Классификация и характеристики отказов
- •1.4. Надежность и сохраняемость
- •1.5. Терминология теории надежности
- •1.6. Классификация технических систем
- •Глава 2 критерии надежности. Законы распределений времени до отказа
- •2.1. Что такое критерий и показатель надежности
- •2.2. Критерии надежности невосстанавливаемых систем
- •2.2.1. Вероятность безотказной работы
- •2.2.2. Плотность распределения времени безотказной работы (частота отказов)
- •2.2.3. Интенсивность отказов
- •2.2.4. Среднее время безотказной работы
- •2.3. Критерии надежности восстанавливаемых систем
- •2.3.1. Среднее время работы между отказами и среднее время восстановления
- •Параметр потока отказов
- •2.3.3. Функция готовности и функция простоя
- •2.4. Законы распределения времени до отказа, наиболее часто используемые в теории надежности
- •2.5. Преобразование Лапласа
- •2.6. Специальные показатели надежности элементов и систем
- •2.6.1. Показатели надежности элемента
- •2.6.2. Стационарные значения показателей надежности элемента
- •2.6.3. Показатели надежности невосстанавливаемой и восстанавливаемой техники
- •2.6.4. Основное уравнение функционирования системы
- •Глава 3 проблемы анализа надежности сложных технических систем
- •3.1. Научное обоснование критериев и показателей надежности
- •3.2. Разработка моделей функционирования сложной системы
- •3.3. Методы анализа надежности технических систем
- •3.3.1. Обзор существующих методов расчета надежности сложных систем
- •3.3.2. Причины неэкспоненциальности случайных параметров, отказов и восстановлений технических систем
- •3.3.3. Зависимость показателей надежности от законов распределения и дисциплины восстановления элементов
- •3.3.4. Критичное влияние произвольных распределений отказов и восстановлений на нестационарные показатели надежности
- •3.3.5. Методы и проблемы расчета надежности систем с большим числом состояний
- •3.3.6. Проблемы расчета надежности реконфигурируемых систем
- •3.4. Проблемы создания высоконадежных систем
- •3.4.1. Основная проблема надежности технических систем
- •3.4.2. Технические проблемы обеспечения надежности сложных систем
- •3.5. Краткие замечания, касающиеся проблем анализа надежности систем
- •Глава 4 математические модели функционирования технических элементов и систем в смысле их надежности
- •4.1. Общая модель надежности технического элемента
- •4.2. Общая модель надежности систем в терминах интегральных уравнений
- •4.2.1«Основные обозначения и допущения
- •4.2.2. Матрица состояний
- •4.2.3. Матрица переходов
- •4.2.4. Выражения для вероятностей состояний и параметров переходов между состояниями
- •4.2.5. Правило составления системы интегральных уравнений
- •4.3. Общая модель функционирования системы в смысле надежности в терминах дифференциальных уравнений в частных производных
- •4.4. Модель надежности стационарного режима
- •4.5. Модели надежности невосстанавливаемых систем
- •4.6. Модели надежности систем при экспоненциальных законах распределения отказов и восстановлений элементов
- •Глава 5 методы анализа надежности технических систем
- •5.1. Способы описания функционирования технических систем в смысле их надежности
- •5.1.1. Структурная схема системы
- •5.1.2. Функции алгебры логики
- •5.1.3. Матрица состояний системы
- •5.1.4. Граф состояний системы
- •5.1.5. Формализованный способ построения графа состояний системы
- •5.1.6. Описание функционирования системы с помощью уравнений типа массового обслуживания
- •5.1.7. Описание функционирования системы с помощью интегральных уравнений
- •5.2. Методы анализа надежности технических систем, основанные на применении теорем теории вероятностей
- •5.2.1. Метод перебора гипотез
- •5.2.2. Метод, основанный на применении классических теорем теории вероятностей
- •5.2.3. Метод минимальных путей и минимальных сечений
- •5.3. Логико-вероятностные методы анализа надежности
- •5.3.1. Сущность логико-вероятностных методов
- •5.3.2. Метод кратчайших путей и минимальных сечений
- •5.3.3. Алгоритм разрезания
- •5.3.4. Алгоритм ортогонализации
- •5.4. Топологические методы анализа надежности
- •5.4.1. Определение вероятностей состояний системы
- •5.4.2. Определение финальных вероятностей состояний системы
- •5.4.3. Определение вероятности попадания системы в I-е состояние в течение времени t
- •5.4.4. Определение количественных характеристик надежности по графу состояний
2.3.1. Среднее время работы между отказами и среднее время восстановления
Среднее время между отказами Т определяется отношением средней суммарной наработки к среднему числу отказов при длительной работе объекта. Среднее время восстановления Тв определяется отношением среднего суммарного времени восстановления к среднему числу восстановлений при длительной работе объекта. Данные определения обсуждаются далее в разд. 2.6.
По статистическим данным среднее время между отказами вычисляется по формуле:
(2.19)
где ti — время между отказами i-го образца, полученное при условии, что испытания ведутся с восстановлением отказавших образцов техники или их заменой. В этом случае число испытуемых образцов техники N0 остается постоянным.
Параметр потока отказов
Параметром потока отказов ω(t) называется производная (скорость изменения) среднего числа отказов объекта в момент t.
Статистически параметр потока отказов определяется как отношение числа отказавших образцов техники в единицу времени к числу образцов, поставленных на испытание при условии, что отказавшие образцы заменяются исправными или отремонтированными:
где п(t, t + Δt) — число отказавших образцов за промежуток времени [t, t + Δt], N0 — число образцов, первоначально поставленных на испытания.
Параметр потока отказов обладает следующими свойствами:
- в случае экспоненциального закона времени работы объекта (см. разд. 2.4) с параметром λ, и мгновенного восстановления ω(t) ≡ λ;
-
при мгновенном восстановлении предел,
к которому стремится параметр потока
отказов при t→∞,
равен величине, обратной среднему
времени безотказной
работы, т. е.
- при мгновенном восстановлении параметр потока отказов и плотность распределения времени до отказа связаны следующим интегральным уравнением Вольтерра второго рода:
Это уравнение устанавливает зависимость между показателями надежности восстанавливаемой и невосстанавливаемой техники. Оно позволяет определить по статистическим данным об отказах восстанавливаемой техники в процессе ее эксплуатации показатели надежности невосстанавливаемой техники (см. гл. 11).
ПРИМЕР 2.2. Время до отказа объекта имеет нормальное распределение с математическим ожиданием Т = 1000 час и средним квадратическим отклонением = 300 час???. Привести графическую иллюстрацию плотности распределения f(t) и параметра потока отказов ω(t).
Решение. Графики функций изображены на рис. 2.2. Параметр потока отказов ω(t) получен путем численного решения уравнения Вольтерра.
Для относительно небольшого времени функционирования объекта параметр потока отказов близок к плотности распределения, но при длительной работе плотность распределения стремится к нулю, тогда как параметр потока отказов приближается к своему стационарному значению, равному 1/T = 0,001 час-1.
2.3.3. Функция готовности и функция простоя
Функцией готовности Кг(t) называется вероятность того, что восстанавливаемая система исправна в момент времени t.
Функцией простоя Кп(t) называется вероятность того, что в момент времени t система находится в отказовом состоянии (в ремонте).
Приведем основные зависимости между введенными показателями:
Данные показатели являются наиболее важными для восстанавливаемых элементов и систем. Другие, более специфические показатели, их определения и расчетные соотношения будут приведены в разд. 2.6.
