
- •1.Предмет и сод. Совр. Естествознания.Методы и уровни найчного познания
- •2.Исторические этапы познания природы.Научная революция и их значение.
- •Масштабы природных объектов. Концепции описания природы.
- •5.Типы фундаментальных взаимодействий.
- •6.Эвалюция предстовления о строение атома. Корпускулярно-волновой дуализм.
- •7.Электромагнитная картина мира.
- •8. Пространство и время. Принципы относительности.
- •9.Термодинамика закрытых и открытых систем. Общие сведения об энтропии.
- •10. Химия как наука.Этапы развития.
- •11.Системный подход в химии.Периодический закон Менделеева.
- •12.Основы структурной химии.Химическая связь и химические реакции.
- •13.Особенности современной химии.Эвалюционная химия.
- •14.Теории происхождения и общие сведения о Вселенной.
- •15.Происхождение и состав солнечной системы.
- •16.Характеристика Земли как планеты и её эволюция.
- •17.Сущность и основные признаки живых систем.
- •18.Основы теории биохимической эволюции.Клетка.
- •19,25. История возникновения и основные понятия генетики. Ген и его свойства. Генетика и практика
- •20.Учение в.И.Вернадского о биосфере.
- •21.Происхождение человека; сходства и отличия человека от животных.
- •22.Соотношение биологического и социального в человеке.
- •26.Кибернетика и синергетика.
26.Кибернетика и синергетика.
Впервые термин кибернетика встречается у древнегреческого философа Платона и означает искусство управлять кораблем (искусство кормчего), а в переносном смысле -искусство управления людьми. Долгое время этим термином не пользовались. Только в 1948 г. этот термин был взят на вооружение известным американским математиком Норбертом Винером, который опубликовал книгу «Кибернетика, или управление и связь в животном и в машине».Данная работа Винера наряду с книгой фон Неймана и О. Моргенштерна «Теория игр и оптимальное поведение» (1944 г.) оказались весьма продуктивными для становления электронно-вычислительной техники.Кибернетика поставила в центр внимания такие понятия как информация, обратная связь, управление и др. На основе идей Винера удалось создать общую теорию информации и связи, применимую в самых различных областях — от физики до биологии и языкознания. В развитии теории информации важную роль сыграли также работы советских ученых А.Н. Колмогорова и А.Я. Хинчина.В кибернетике были предприняты первые серьезные усилия по научному исследованию феномена самоорганизации. Кибернетика имела дело как с живыми, так и с техническими (построенными из неживого вещества) управляемыми и саморегулирующимися системами, т.е. с системами, в которых самоорганизация заложена изначально. Кибернетику интересовали гомеостатические системы, поддерживающие свое функционирование в заданном режиме. Само понятие гомеостазиса указывает на то, что в гомеостатической системе речь может идти только о самоорганизации, направленной на достижение оптимальной структуры ее элементов. Такая идея позволяет понять факт устойчивости и сохранения систем (в том числе живых). Но с позиций гомеостазиса нельзя понять как возникают новые системы, причем не только в живой, но и в неорганической природе. К тому же, проблема гомеостазиса в кибернетике рассматривается с чисто функциональной точки зрения и поэтому в ней не анализируются конкретные механизмы самоорганизации.В настоящее время считается установленным, что процессы самоорганизации (так же как, разумеется, и дезорганизации) могут происходить в сравнительно простых физических и химических средах неорганической природы. А это означает, что простейшая, элементарная форма самоорганизации имеет место уже в рамках физической и химической форм движения материи. Причем, чем сложнее форма движения материи, тем выше уровень ее самоорганизации.Синергетика как новая парадигма самоорганизации зародилась в нашей стране. Еще в 60-х годах XX века советским ученым Б.Н.Белоусовым были начаты интересные эксперименты с так называемыми автокаталитическими химическими реакциями, которые затем были продолжены A.M. Жаботинским. Эти эксперименты показали, что наличие автокаталитических реакций значительно ускоряет процессы самоорганизации в химической форме движения. Были высказаны веские предположения, что именно автокаталитические самоорганизующиеся химические процессы послужили основой для перехода от предбиологической к биологической форме движения материи.Позднее реакция Белоусова-Жаботинского послужило экспериментальной основой для построения математической модели самоорганизующихся процессов в бельгийской школе лауреата Нобелевской премии И.Р. Пригожина. Исследуя по преимуществу процессы самоорганизации в физических и химических системах, И.Р. Пригожин в целом ряде своих работ (часть из них переведена на русский язык) раскрывает исторические предпосылки и мировоззренческие основания теории самоорганизации.В 70—80-х годах XX века работы в области синергетики быстро расширялись, в них включались все новые исследователи. Немецкому профессору Г. Хакену (Институт синергетики и теоретической физики в Штутгарте) удалось объединить большую международную группу ученых, создавшую серию книг по синергетике. В этих работах представлялись результаты исследований процессов самоорганизации в самых разных системах, включая и социальные.В нашей стране разработкой теории самоорганизации на базе математических моделей и вычислительного (компьютерного) эксперимента занялась школа академика А.А. Самарского и члена-корреспондента РАН С.П. Курдюмова. Эта школа выдвинула ряд оригинальных идей для понимания механизмов возникновения и эволюции относительно устойчивых структур в нелинейных средах.Синергетику, как новую парадигму, можно предельно кратко охарактеризовать тремя ключевыми идеями: самоорганизация, открытые системы, нелинейность.Физика XIX века ввела понятие о необратимых процессах. Провозглашая необратимый характер физических изменений, классическая термодинамика считала, что эти изменения могут происходить лишь в сторону увеличения энтропии, а следовательно, усиления хаоса, дезорганизации материальных систем. Эти представления об эволюции физических (неорганических) систем, способных лишь к движению в сторону дезорганизации, находились в резком противоречии с самоорганизацией живых систем.Но физика XIX столетия рассматривала лишь закрытые, изолированные от окружающей среды системы, в которых энтропия действительно имеет тенденцию к возрастанию. Такие системы «эволюционируют» в сторону термодинамического равновесия и дезорганизации - в полном соответствии со вторым началом термодинамики. Однако в наше время считается установленным, что представление прежней физики о закрытых системах схематизирует и упрощает действительность, то есть является весьма сильной идеализацией, которая реально в природе не встречается.Во второй половине XX века в науке утвердилось представление согласно которому открытость системы является непременным условием самоорганизации. Еще до появления синергетики американский кибернетик Г. Ферстер выразил это достаточно ясно. «Термин самоорганизующаяся система», - писал он, - становится бессмысленным, если система не находится в контакте с окружением, которая обладает доступным для нее энергией и порядком и с которым наша система находится в состоянии постоянного взаимодействия, так что она умудряется как-то «жить» за счет этого окружения»31.Тот факт, что для самоорганизации необходима открытая система, то есть система, обменивающаяся с окружающей средой веществом и энергией, ставил под сомнение универсальную справедливость выводов классической термодинамики, имеющей дело с закрытыми системами (которые изолированы от окружающей среды и которые, как уже отмечалось выше, фактически не встречаются в природе). Оказалось, что принцип Больцмана (второе начало термодинамики) в буквальном смысле не применим к системам открытого типа. Конечно, и в открытых системах может нарастать энтропия, происходить увеличение беспорядка (дезорганизации), но за счет обмена энергией с окружающей средой эти процессы могут приостанавливаться и даже приобретать обратный характер. В такого рода системах, грубо говоря, использованная, «обесцененная» энергия рассеивается в окружающей среде (а взамен поступает новая энергия из среды). Поэтому подобные системы, или структуры получили наименование «диссипативные», что в переводе с английского означает «рассеивающие». Данное понятие сыграло важную роль в становлении синергетики32.Разработка теории диссипативных структур показало, что диссипация - это не фактор разрушения, а необходимое и важное свойство процессов самоорганизации. Именно диссипация есть необходимый процесс, способствующий выстраиванию упорядоченной структуры в нелинейной открытой среде.Диссипативные структуры, не подчиняющиеся принципу Больцмана, связаны с совершенно другим принципом, который И.Р. Пригожин назвал «возникновение порядка через флуктуации». Как рождается порядок из хаоса (беспорядка)? - ставит вопрос И.Р. Пригожин (и этот вопрос выносит в заголовок своей основополагающей работы по синергетике, написанной в соавторстве с И. Стенгерс)33. С его точки зрения, инициирующим началом самоструктурирования нелинейной открытой среды является малая флуктуация. Под флуктуациями в синергетике понимают случайные отклонения величин, характеризующих систему, от средних значений. Таким образом, синергетическое понятие флуктуации оказалось тесно связанным с философской категорией случайности.Синергетика по-новому осветила место и роль случайности в эволюции материального мира. Она опровергла тот привычный взгляд, будто случайная флуктуация несущественна, ибо маломасштабна, и в силу этого, не может определять путь развития системы. С точки зрения синергетики, в открытых нелинейных системах (а таковые типичны в мире, в котором мы живем) случайное малое воздействие - флуктуация - может приводить к весьма существенному результату. Таким образом случайность играет особую, конструктивную (можно даже сказать — креативную) роль в процессах самоорганизации, происходящих в материальном мире.Формирование синергетики в последней четверти XX столетия оказалось в чем-то схожим со становлением кибернетики в середине этого столетия. Такая схожесть основывается на обнаруженной общности в феноменах, имеющих место в системах неживой и живой природы, а также в социальных системах. Во всех этих материальных системах имеют место процессы самоорганизации.Вместе с тем между кибернетикой и синергетикой существует и значительное различие. Кибернетика, возникшая на рубеже 40-50-х годов XX века, претендовала на общенаучное значение в изучении процессов управления, имеющих место в некоторых неорганических (созданных человеком), биологических и социальных системах. И, надо сказать, она успешно отстояла свой общенаучный статус. Синергетика претендует сегодня на большее: она выступает уже как новое миропонимание, как основа концепций глобального и космического эволюционизма.
Предмет и содержание современного естествознания. Методы и уровни научного познания.
Исторические этапы познания природы. Научные революции и их значение.
Основы классической физики. Законы сохранения.
Масштабы природных объектов. Концепции описания природы
Типы фундаментальных взаимодействий. Классификация элементарных частиц.
Эволюция представлений о строении атома. Корпускулярно-волновой дуализм.
Электромагнитная картина мира.
Пространство и время. Принципы относительности.
Термодинамика закрытых и открытых систем. Общие сведения об энтропии.
Химия как наука. Этапы развития химии.
Системный подход в химии. Периодический закон Д.И. Менделеева
Основы структурной химии. Химическая связь и химические реакции.
Особенности современной химии. Эволюционная химия.
Теории происхождения и общие представления о Вселенной.
Гипотезы происхождения и структура Солнечной системы.
Особенности строения планеты Земля.
Сущность, теории возникновения жизни. Отличительные признаки живого.
Основы теории биохимической эволюции. Клетка как элементарная единица живого.
Основные понятия генетики. Передача генетической информации.
Возникновение и эволюция биосферы, ее состав и строение. Сущность теории ноосферы
Концепции происхождения человека и цивилизации. Отличие человека от животного.
Соотношение в человеке биологического и социального.
Стратегии выживания в современных условиях. Устойчивое развитие.
Перспективные материалы и технологии.
Генные технологии. Проблемы клонирования.
Понятие кибернетики и синергетика. Физические модели самоорганизации в экономике.
Вопросы утверждены на заседании кафедры экологии и производственных технологий (протокол № 1 от 01.09.2009 г.)