
- •1. Основные понятия, термины и определения 8
- •2. Количественные показатели аппаратурной надежности асоиу 27
- •3. Математические модели надежности аппаратуры асоиу 41
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования 49
- •5. Расчет надежности ремонтируемых систем 63
- •6. Основы моделирования и расчета надежности программных средств 73
- •7. Основы эргономики асоиу 87
- •8. Основы организации испытаний асоиу на надежность 107
- •9. Основные принципы обеспечения качества промышленной продукции 117
- •Введение
- •1. Основные понятия, термины и определения
- •1.1. Система и ее элементы
- •1.2. Основные функции асоиу
- •1.3. Понятия надежности и отказа системы (элемента)
- •1.4. Основные определения в области качества и надежности программного обеспечения (по) асоиу
- •1.5. Основные определения в области надежности подсистемы человек-оператор асоиу
- •1.6. Факторы, влияющие на надежность асоиу
- •1.6.1. Контроль технического состояния асоиу в процессе эксплуатации
- •1.6.2. Влияние внешних воздействующих факторов при эксплуатации асоиу
- •1.7. Проблема стандартизации в области надежности и качества
- •2. Количественные показатели аппаратурной надежности асоиу
- •2.1. Основные показатели надежности невосстанавливаемых объектов
- •2.1.1. Вероятность безотказной работы
- •2.1.2. Вероятность отказа
- •2.1.3. Средняя наработка до отказа
- •2.1.4. Интенсивность отказов
- •2.2. Показатели надежности восстанавливаемых объектов
- •2.2.1. Показатели безотказности восстанавливаемых объектов
- •2.2.1.1. Параметр потока отказов
- •2.2.1.2. Средняя наработка на отказ объекта
- •2.2.2. Показатели ремонтопригодности
- •2.2.2.1. Вероятность восстановления
- •2.2.2.2. Среднее время восстановления
- •2.2.2.3. Интенсивность восстановления
- •2.2.3. Показатели долговечности
- •Комплексные показатели надежности
- •2.3.1. Коэффициент готовности
- •2.3.2. Коэффициент оперативной готовности
- •2.3.3. Коэффициент технического использования
- •Коэффициент сохранения эффективности
- •3. Математические модели надежности аппаратуры асоиу
- •3.1. Модели потоков событий
- •3.1.1. Простейший поток отказов
- •3.1.2. Потоки Эрланга
- •3.2. Законы распределения дискретных случайных величин
- •3.2.1. Биномиальный закон распределения числа появления события а в m независимых испытаниях
- •3.2.2. Пуассоновское распределение появления n событий за время t
- •3.3. Законы распределения непрерывных случайных величин
- •3.3.1. Экспоненциальное распределение
- •3.3.2. Нормальное распределение
- •3.3.3. Гамма-распределение
- •3.4. Модели случайных процессов
- •3.3.1. Марковские процессы
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования
- •4.1. Составление логических схем
- •4.2. Расчет надежности нерезервированной невосстанавливаемой системы
- •Учет влияния режимов работы элементов на надежность
- •4.4. Расчет надежности невосстанавливаемых резервированных систем
- •4.4.1. Резервирование с целой кратностью с постоянно включенным резервом или нагруженное резервирование замещением с абсолютно надежными переключателями
- •4.4.1.1. Общее резервирование
- •4.4.1.2. Раздельное резервирование
- •4.4.1.3. Общее резервирование с дробной кратностью
- •4.4.2. Резервирование замещением ненагруженное и облегченное с абсолютно надёжными переключателями
- •4.4.2.1.Общее ненагруженное резервирование замещением
- •4.4.2.2. Облегченное резервирование замещением
- •В случае показательного распределения наработки до отказа
- •4.4.3. Резервирование с учетом надежности переключателей
- •4.4.4. Скользящее резервирование
- •5. Расчет надежности ремонтируемых систем
- •5.1. Общая характеристика методов расчета надежности ремонтируемых систем
- •Вычисление функций готовности и простоя нерезервированных систем
- •5.3. Особенности расчета резервированных систем
- •5.3.1. Ненагруженное резервирование с восстановлением
- •5.3.2. Нагруженное резервирование замещением
- •Расчет надежности восстанавливаемых систем, перерывы в работе которых в процессе эксплуатации недопустимы
- •Примеры решения типовых задач
- •Основы моделирования и расчета надежности программных средств
- •6.1. Модель анализа надежности программных средств
- •6.2. Статистика ошибок по асоиу
- •6.3. Количественные характеристики надежности по асоиу
- •6.4. Модели надежности программного обеспечения
- •6.4.1. О возможности построения априорных мнп
- •6.4.2. Непрерывные эмпирические модели надежности по (нэмп)
- •6.4.3. Дискретные эмпирические модели надежности по (дэмп)
- •6.5. Способы обеспечения и повышения надежности по
- •6.5.1. Основы организации тестирования программ
- •6.5.1.1. Особенности тестирования « белого ящика»
- •6.5.1.2. Особенности функционального тестирования по ( методы тестирования «черного ящика»)
- •6.5.1.3. Организация процесса тестирования программного обеспечения
- •6.5.2. Способы оперативного повышения надежности по
- •Основы эргономики асоиу
- •7.1. Основные понятия и определения
- •7.2. Классификация эргономических методов исследования
- •7.3. Характеристика деятельности человека-оператора технических систем
- •7.4. Влияние человека - оператора на надежность асоиу
- •Показатели безошибочности человека-оператора
- •7.4.2. Способы борьбы с ошибками оператора
- •7.5. Проектирование дружественных пользователю вычислительных систем
- •7.5.1. Эргономика средств ввода информации
- •7.5.2. Работа с дисплеями и требования к ним
- •7.5.3. Организация компьютеризованных рабочих мест
- •7.6. Организация диалога человека и эвм
- •8. Основы организации испытаний асоиу на надежность
- •8.1. Виды испытаний на надежность
- •Принципиальные особенности организации испытаний на надежность асоиу
- •Основы организации определительных испытаний на надежность
- •8.3.1. Точечные оценки показателей безотказности и ремонтопригодности
- •8.3.2. Оценка показателей надежности доверительным интервалом
- •8.3.2.1. Определение доверительного интервала для средней наработки на отказ
- •8.3.2.2. Определение доверительного интервала для вероятности безотказной работы по числу обнаруженных при испытаниях отказов
- •8.4. Основы организации контрольных испытаний
- •9. Основные принципы обеспечения качества промышленной продукции
- •9.1. Современная концепция обеспечения качества продукции
- •Наименование детали
- •Два подхода к контролю за качеством продукции
- •Заключение
5.3. Особенности расчета резервированных систем
5.3.1. Ненагруженное резервирование с восстановлением
Система, состоящая из равнонадежных элементов - одного основного и k резервных, может находиться в любом из (k+2) состояний:
0 - все элементы работоспособны;
1 - один элемент в неработоспособном состоянии / восстанавливается;
j - когда j элементов в неработоспособном состоянии / восстанавливаются;
k+1 – когда все (k+1) элементов в неработоспособном состоянии / восстанавливаются.
Предполагается, что при замене работающего элемента на резервный перерыва в работе системы не происходит, поэтому отказ системы наступает при одновременной неработоспособности основного и всех резервных элементов (состояние k+1).
Рассмотрим случай так называемого полностью ограниченного восстановления [5.2], когда имеется одна ремонтная бригада, обслуживающая систему и независимо от числа отказавших элементов одновременно может восстанавливаться только один (рис. 5.2, а).
Рис. 5.2. Схема состояний системы, состоящей из основного и k одинаковых элементов в ненагруженном резерве при ограниченном (а) и неограниченном (б) восстановлении
Предполагаем вариант резервирования с абсолютно надежными переключателями. В случае ненагруженного резерва (см. п. 4.2) резервные элементы до момента их включения вместо отказавших основных имеют интенсивность отказов λ = 0. Если число неработоспособных элементов оказывается больше одного, то существует очередь на ремонт.
Система дифференциальных уравнений имеет следующий вид:
(5.9)
При t→∞ система (5.9) переходит в систему алгебраических уравнений:
(5.10)
Система алгебраических уравнений (5.10) является зависимой и если попытаться ее решить как независимую систему, то будет получен тривиальный результат - Pj = 0 (j = 0, 1,…, k+1).
Для решения системы (5.10) необходимо добавить уравнение связи
,
(5.11)
и из системы (5.10) исключить любое одно уравнение. Обычно исключают самое сложное.
В результате решения системы (5.10) совместно с уравнением (5.11) получим установившиеся значения коэффициентов простоя и готовности:
(5.12)
Если та же система, состоящая из k+1 элементов, обслуживается (k+1) ремонтными бригадами (неограниченное восстановление), то очередь на ремонт отсутствует. Схема состояний для ненагруженного резерва и неограниченного восстановления представлена на рис. 5-2, б.
В результате решения системы уравнений при Р'j (t) =0 получим:
(5.13)
5.3.2. Нагруженное резервирование замещением
Схемы состояний для системы, состоящей из одного основного и k элементов, в нагруженном резерве представлены на рис. 5.3.
Рассуждая аналогично п. 5.3.1, получим:
для ограниченного восстановления
(5.14)
Рис. 5.3. Схема состояний системы, состоящей из основного и k элементов в нагруженном резерве при ограниченном (а) и неограниченном (б) восстановлении
д
ля
неограниченного восстановления
(5.15)
Выражение (5.15) представляет собой вероятность случайного исхода, имеющего биномиальное распределение. Это объясняется независимостью отказов и восстановлений элементов.
На рис. 5.4 представлена схема состояний для нагруженной дублированной системы, где основной и резервный элемент имеют различные интенсивности отказов λ1 и λ2 и используется ограниченное восстановление.
Обозначим состояния системы следующим образом:
оба элемента системы работоспособны;
первый элемент отказал, восстанавливается, вместо него включился в работу резервный;
второй элемент отказал, восстанавливается, вместо него включился в работу резервный;
и основной и запасной элементы отказали. Отказ системы и ее восстановление.
Рис. 5.4. Схема состояний системы, состоящей из двух элементов с разными интенсивностями отказов
В этом случае
.
При t→∞ КП = Р3, Кг = 1 - Р3.
При подготовке к занятиям попробуйте записать систему дифференциальных уравнений (см. п. 5.2), а для установившегося режима – систему алгебраических уравнений.