
- •1. Основные понятия, термины и определения 8
- •2. Количественные показатели аппаратурной надежности асоиу 27
- •3. Математические модели надежности аппаратуры асоиу 41
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования 49
- •5. Расчет надежности ремонтируемых систем 63
- •6. Основы моделирования и расчета надежности программных средств 73
- •7. Основы эргономики асоиу 87
- •8. Основы организации испытаний асоиу на надежность 107
- •9. Основные принципы обеспечения качества промышленной продукции 117
- •Введение
- •1. Основные понятия, термины и определения
- •1.1. Система и ее элементы
- •1.2. Основные функции асоиу
- •1.3. Понятия надежности и отказа системы (элемента)
- •1.4. Основные определения в области качества и надежности программного обеспечения (по) асоиу
- •1.5. Основные определения в области надежности подсистемы человек-оператор асоиу
- •1.6. Факторы, влияющие на надежность асоиу
- •1.6.1. Контроль технического состояния асоиу в процессе эксплуатации
- •1.6.2. Влияние внешних воздействующих факторов при эксплуатации асоиу
- •1.7. Проблема стандартизации в области надежности и качества
- •2. Количественные показатели аппаратурной надежности асоиу
- •2.1. Основные показатели надежности невосстанавливаемых объектов
- •2.1.1. Вероятность безотказной работы
- •2.1.2. Вероятность отказа
- •2.1.3. Средняя наработка до отказа
- •2.1.4. Интенсивность отказов
- •2.2. Показатели надежности восстанавливаемых объектов
- •2.2.1. Показатели безотказности восстанавливаемых объектов
- •2.2.1.1. Параметр потока отказов
- •2.2.1.2. Средняя наработка на отказ объекта
- •2.2.2. Показатели ремонтопригодности
- •2.2.2.1. Вероятность восстановления
- •2.2.2.2. Среднее время восстановления
- •2.2.2.3. Интенсивность восстановления
- •2.2.3. Показатели долговечности
- •Комплексные показатели надежности
- •2.3.1. Коэффициент готовности
- •2.3.2. Коэффициент оперативной готовности
- •2.3.3. Коэффициент технического использования
- •Коэффициент сохранения эффективности
- •3. Математические модели надежности аппаратуры асоиу
- •3.1. Модели потоков событий
- •3.1.1. Простейший поток отказов
- •3.1.2. Потоки Эрланга
- •3.2. Законы распределения дискретных случайных величин
- •3.2.1. Биномиальный закон распределения числа появления события а в m независимых испытаниях
- •3.2.2. Пуассоновское распределение появления n событий за время t
- •3.3. Законы распределения непрерывных случайных величин
- •3.3.1. Экспоненциальное распределение
- •3.3.2. Нормальное распределение
- •3.3.3. Гамма-распределение
- •3.4. Модели случайных процессов
- •3.3.1. Марковские процессы
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования
- •4.1. Составление логических схем
- •4.2. Расчет надежности нерезервированной невосстанавливаемой системы
- •Учет влияния режимов работы элементов на надежность
- •4.4. Расчет надежности невосстанавливаемых резервированных систем
- •4.4.1. Резервирование с целой кратностью с постоянно включенным резервом или нагруженное резервирование замещением с абсолютно надежными переключателями
- •4.4.1.1. Общее резервирование
- •4.4.1.2. Раздельное резервирование
- •4.4.1.3. Общее резервирование с дробной кратностью
- •4.4.2. Резервирование замещением ненагруженное и облегченное с абсолютно надёжными переключателями
- •4.4.2.1.Общее ненагруженное резервирование замещением
- •4.4.2.2. Облегченное резервирование замещением
- •В случае показательного распределения наработки до отказа
- •4.4.3. Резервирование с учетом надежности переключателей
- •4.4.4. Скользящее резервирование
- •5. Расчет надежности ремонтируемых систем
- •5.1. Общая характеристика методов расчета надежности ремонтируемых систем
- •Вычисление функций готовности и простоя нерезервированных систем
- •5.3. Особенности расчета резервированных систем
- •5.3.1. Ненагруженное резервирование с восстановлением
- •5.3.2. Нагруженное резервирование замещением
- •Расчет надежности восстанавливаемых систем, перерывы в работе которых в процессе эксплуатации недопустимы
- •Примеры решения типовых задач
- •Основы моделирования и расчета надежности программных средств
- •6.1. Модель анализа надежности программных средств
- •6.2. Статистика ошибок по асоиу
- •6.3. Количественные характеристики надежности по асоиу
- •6.4. Модели надежности программного обеспечения
- •6.4.1. О возможности построения априорных мнп
- •6.4.2. Непрерывные эмпирические модели надежности по (нэмп)
- •6.4.3. Дискретные эмпирические модели надежности по (дэмп)
- •6.5. Способы обеспечения и повышения надежности по
- •6.5.1. Основы организации тестирования программ
- •6.5.1.1. Особенности тестирования « белого ящика»
- •6.5.1.2. Особенности функционального тестирования по ( методы тестирования «черного ящика»)
- •6.5.1.3. Организация процесса тестирования программного обеспечения
- •6.5.2. Способы оперативного повышения надежности по
- •Основы эргономики асоиу
- •7.1. Основные понятия и определения
- •7.2. Классификация эргономических методов исследования
- •7.3. Характеристика деятельности человека-оператора технических систем
- •7.4. Влияние человека - оператора на надежность асоиу
- •Показатели безошибочности человека-оператора
- •7.4.2. Способы борьбы с ошибками оператора
- •7.5. Проектирование дружественных пользователю вычислительных систем
- •7.5.1. Эргономика средств ввода информации
- •7.5.2. Работа с дисплеями и требования к ним
- •7.5.3. Организация компьютеризованных рабочих мест
- •7.6. Организация диалога человека и эвм
- •8. Основы организации испытаний асоиу на надежность
- •8.1. Виды испытаний на надежность
- •Принципиальные особенности организации испытаний на надежность асоиу
- •Основы организации определительных испытаний на надежность
- •8.3.1. Точечные оценки показателей безотказности и ремонтопригодности
- •8.3.2. Оценка показателей надежности доверительным интервалом
- •8.3.2.1. Определение доверительного интервала для средней наработки на отказ
- •8.3.2.2. Определение доверительного интервала для вероятности безотказной работы по числу обнаруженных при испытаниях отказов
- •8.4. Основы организации контрольных испытаний
- •9. Основные принципы обеспечения качества промышленной продукции
- •9.1. Современная концепция обеспечения качества продукции
- •Наименование детали
- •Два подхода к контролю за качеством продукции
- •Заключение
3.2. Законы распределения дискретных случайных величин
3.2.1. Биномиальный закон распределения числа появления события а в m независимых испытаниях
Если вероятность события А в одном испытании равна р, вероятность непоявления события А равна q = 1 - p, число независимых испытаний равно m, то вероятность появления n cобытий в m испытаниях определяется согласно биномиальному распределению:
.
(3.8)
Свойства распределения следующие:
Число n – целое положительное число.
Математическое ожидание числа событий равно mp.
Среднеквадратичное отклонение числа событий
.
(3.9)
При увеличении числа испытаний биномиальное распределение приближается к нормальному распределению ( см. п. 3.3.2) со средним значением n/m и дисперсией p(1 - p)/m.
Биномиальное распределение часто используется при проведении испытаний на надежность.
3.2.2. Пуассоновское распределение появления n событий за время t
Условия реализации распределения – простейший поток отказов (см. п. 3.1.1), для которого вероятность появления n событий определяется как
.
Свойства распределения следующие:
- математическое ожидание числа событий за время t равно λt,
-
среднеквадратичное отклонение числа
событий
,
- время возникновения отказов подчиняется экспоненциальному распределению.
3.3. Законы распределения непрерывных случайных величин
3.3.1. Экспоненциальное распределение
Как было отмечено выше (см. п. 3.1.1), экспоненциальное распределение вероятности безотказной работы реализуется в случае простейшего потока отказов, когда рассматривается вероятность непоявления отказов. Это распределение однопараметрическое, то есть закон распределения случайной величины зависит только от одного параметра λ = const .
Показатели безотказности для экспоненциального распределения определяются так:
вероятность безотказной работы
,
(3.10)
вероятность отказа
,
(3.11)
плотность вероятности отказа
,
(3.12)
интенсивность отказа
,
(3.13)
среднее время безотказной работы
.
(3.14)
Таким образом, зная среднее время безотказной работы Т1 (или постоянную интенсивность отказов λ), можно в случае экспоненциального распределения вычислить любой показатель безотказности.
Отметим, что вероятность безотказной работы на интервале, превышающем среднее время Т1, при экспоненциальном распределении будет менее 0,368:
Р(Т1) = е –1 = 0,368 ( см. рис. 3.1).
Длительность периода нормальной эксплуатации до наступления старения может оказаться существенно меньше Т1, то есть интервал времени, на котором допустимо использование экспоненциальной модели, часто бывает меньшим среднего времени безотказной работы, вычисленного для этой модели.
Рис. 3.1. График экспоненциального распределения
Это легко обосновать, воспользовавшись значением дисперсии времени безотказной работы, которое [3.1, 3.2, 3.3] для случайной величины t равно:
.
(3.15)
После некоторых преобразований получим:
.
(3.16)
Таким образом,
наиболее вероятные значения наработки,
группирующиеся в окрестности Т1,
лежат в диапазоне
,
то есть от
t = 0 до t
= 2Т1.
Видно, что объект может отработать и малый отрезок времени и время t=2Т1, сохранив λ = const. Но вероятность безотказной работы на интервале 2Т1 крайне низка и равна e-2 = 0,135.
Важно отметить, что если объект отработал, предположим, время t без отказа, сохранив λ = соnst, то дальнейшее распределение времени безотказной работы будет таким же, как в момент первого включения при t = 0 .
Другие распределения не имеют указанного свойства. Из рассмотренного следует на первый взгляд парадоксальный вывод: поскольку за все время t устройство не стареет (не меняет своих свойств), то нецелесообразно проводить профилактику или замену устройств для предупреждения внезапных отказов, подчиняющихся экспоненциальному закону. Однако это не так, поскольку, как только что было показано, можно использовать экспоненциальное распределение только на отрезке времени работы, меньшем чем Т1.