Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Nadezhnost.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.95 Mб
Скачать
      1. Коэффициент сохранения эффективности

Для сложных систем с множеством состояний работоспособности часто задаются требования поддержания определенного значения показателя эффективности работы.

Согласно ГОСТ 27.003-90 для таких систем в качестве комплексного показателя надежности может быть использован показатель Кэф - коэффициент сохранения эффективности [2.3].

, (2.37)

где W1 - эффективность системы с учетом имеющихся отказов элементов,

W2 - эффективность системы при отсутствии каких–либо отказов (номинальная эффективность).

В зависимости от назначения системы эффективность определяется по-разному. Например, для АСУ ТП тепловых и атомных энергоблоков эффективность может определяться мощностью энергии, вырабатываемой блоком за календарное время. Для банковской сети в качестве показателя эффективности может быть принята вероятность выполнения интегрированных платежных и информационных услуг по произвольному требованию.

Библиографический список

    1. Гнеденко Б.В. Математические основы теории надежности / Б.В. Гнеденко, Ю.К. Беляев, А.Д. Соловьев. М.: Наука, 1966.

    2. Голинкевич Т.А. Прикладная теория надежности: учебник для вузов / Т.А. Голинкевич. М.: Высшая школа, 1977.

    3. Ястребенецкий М.А. Надежность автоматизированных систем управления технологическими процессами / М.А. Ястребенецкий, Г.М. Иванова. М.: Энергоатомиздат, 1989.

    4. Иыуду К.А. Надежность, контроль и диагностика вычислительных машин и систем. / К.А. Иыуду. М.: Высшая школа, 1989.

3. Математические модели надежности аппаратуры асоиу

Выбор модели надежности – зависимости показателей надежности от времени – является сложной научно-технической проблемой. Она может быть удовлетворительно решена стандартными методами математической статистики, если имеется большой статистический материал об отказах исследуемых объектов. Но из-за высокой надежности элементной базы, на основе которой проектируется аппаратура АСОИУ, как правило, статистических данных об отказах недостаточно. В этом случае в качестве математических моделей надежности объектов используют известные законы распределений случайных величин, случайных процессов и потоков событий с малым числом параметров [3.1, 3.2, 3.3 , 3.4].

К таким моделям относятся экспоненциальное, гамма и нормальное распределения непрерывных случайных величин, биномиальное и пуассоновское распределения дискретных случайных величин, простейший поток отказов, однородные марковские процессы.

Указанные модели применяются при априорных расчетах показателей надежности на этапе проектирования систем (элементов) для сравнения варианта – прототипа объекта с новым, разрабатываемым вариантом. При этом модель объективно реагирует на изменение в надежности сравниваемых вариантов. Использование указанных моделей для окончательной оценки надежности эксплуатируемой системы является некорректным.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]