
- •1. Основные понятия, термины и определения 8
- •2. Количественные показатели аппаратурной надежности асоиу 27
- •3. Математические модели надежности аппаратуры асоиу 41
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования 49
- •5. Расчет надежности ремонтируемых систем 63
- •6. Основы моделирования и расчета надежности программных средств 73
- •7. Основы эргономики асоиу 87
- •8. Основы организации испытаний асоиу на надежность 107
- •9. Основные принципы обеспечения качества промышленной продукции 117
- •Введение
- •1. Основные понятия, термины и определения
- •1.1. Система и ее элементы
- •1.2. Основные функции асоиу
- •1.3. Понятия надежности и отказа системы (элемента)
- •1.4. Основные определения в области качества и надежности программного обеспечения (по) асоиу
- •1.5. Основные определения в области надежности подсистемы человек-оператор асоиу
- •1.6. Факторы, влияющие на надежность асоиу
- •1.6.1. Контроль технического состояния асоиу в процессе эксплуатации
- •1.6.2. Влияние внешних воздействующих факторов при эксплуатации асоиу
- •1.7. Проблема стандартизации в области надежности и качества
- •2. Количественные показатели аппаратурной надежности асоиу
- •2.1. Основные показатели надежности невосстанавливаемых объектов
- •2.1.1. Вероятность безотказной работы
- •2.1.2. Вероятность отказа
- •2.1.3. Средняя наработка до отказа
- •2.1.4. Интенсивность отказов
- •2.2. Показатели надежности восстанавливаемых объектов
- •2.2.1. Показатели безотказности восстанавливаемых объектов
- •2.2.1.1. Параметр потока отказов
- •2.2.1.2. Средняя наработка на отказ объекта
- •2.2.2. Показатели ремонтопригодности
- •2.2.2.1. Вероятность восстановления
- •2.2.2.2. Среднее время восстановления
- •2.2.2.3. Интенсивность восстановления
- •2.2.3. Показатели долговечности
- •Комплексные показатели надежности
- •2.3.1. Коэффициент готовности
- •2.3.2. Коэффициент оперативной готовности
- •2.3.3. Коэффициент технического использования
- •Коэффициент сохранения эффективности
- •3. Математические модели надежности аппаратуры асоиу
- •3.1. Модели потоков событий
- •3.1.1. Простейший поток отказов
- •3.1.2. Потоки Эрланга
- •3.2. Законы распределения дискретных случайных величин
- •3.2.1. Биномиальный закон распределения числа появления события а в m независимых испытаниях
- •3.2.2. Пуассоновское распределение появления n событий за время t
- •3.3. Законы распределения непрерывных случайных величин
- •3.3.1. Экспоненциальное распределение
- •3.3.2. Нормальное распределение
- •3.3.3. Гамма-распределение
- •3.4. Модели случайных процессов
- •3.3.1. Марковские процессы
- •4. Расчет надежности невосстанавливаемой аппаратуры асоиу на этапе проектирования
- •4.1. Составление логических схем
- •4.2. Расчет надежности нерезервированной невосстанавливаемой системы
- •Учет влияния режимов работы элементов на надежность
- •4.4. Расчет надежности невосстанавливаемых резервированных систем
- •4.4.1. Резервирование с целой кратностью с постоянно включенным резервом или нагруженное резервирование замещением с абсолютно надежными переключателями
- •4.4.1.1. Общее резервирование
- •4.4.1.2. Раздельное резервирование
- •4.4.1.3. Общее резервирование с дробной кратностью
- •4.4.2. Резервирование замещением ненагруженное и облегченное с абсолютно надёжными переключателями
- •4.4.2.1.Общее ненагруженное резервирование замещением
- •4.4.2.2. Облегченное резервирование замещением
- •В случае показательного распределения наработки до отказа
- •4.4.3. Резервирование с учетом надежности переключателей
- •4.4.4. Скользящее резервирование
- •5. Расчет надежности ремонтируемых систем
- •5.1. Общая характеристика методов расчета надежности ремонтируемых систем
- •Вычисление функций готовности и простоя нерезервированных систем
- •5.3. Особенности расчета резервированных систем
- •5.3.1. Ненагруженное резервирование с восстановлением
- •5.3.2. Нагруженное резервирование замещением
- •Расчет надежности восстанавливаемых систем, перерывы в работе которых в процессе эксплуатации недопустимы
- •Примеры решения типовых задач
- •Основы моделирования и расчета надежности программных средств
- •6.1. Модель анализа надежности программных средств
- •6.2. Статистика ошибок по асоиу
- •6.3. Количественные характеристики надежности по асоиу
- •6.4. Модели надежности программного обеспечения
- •6.4.1. О возможности построения априорных мнп
- •6.4.2. Непрерывные эмпирические модели надежности по (нэмп)
- •6.4.3. Дискретные эмпирические модели надежности по (дэмп)
- •6.5. Способы обеспечения и повышения надежности по
- •6.5.1. Основы организации тестирования программ
- •6.5.1.1. Особенности тестирования « белого ящика»
- •6.5.1.2. Особенности функционального тестирования по ( методы тестирования «черного ящика»)
- •6.5.1.3. Организация процесса тестирования программного обеспечения
- •6.5.2. Способы оперативного повышения надежности по
- •Основы эргономики асоиу
- •7.1. Основные понятия и определения
- •7.2. Классификация эргономических методов исследования
- •7.3. Характеристика деятельности человека-оператора технических систем
- •7.4. Влияние человека - оператора на надежность асоиу
- •Показатели безошибочности человека-оператора
- •7.4.2. Способы борьбы с ошибками оператора
- •7.5. Проектирование дружественных пользователю вычислительных систем
- •7.5.1. Эргономика средств ввода информации
- •7.5.2. Работа с дисплеями и требования к ним
- •7.5.3. Организация компьютеризованных рабочих мест
- •7.6. Организация диалога человека и эвм
- •8. Основы организации испытаний асоиу на надежность
- •8.1. Виды испытаний на надежность
- •Принципиальные особенности организации испытаний на надежность асоиу
- •Основы организации определительных испытаний на надежность
- •8.3.1. Точечные оценки показателей безотказности и ремонтопригодности
- •8.3.2. Оценка показателей надежности доверительным интервалом
- •8.3.2.1. Определение доверительного интервала для средней наработки на отказ
- •8.3.2.2. Определение доверительного интервала для вероятности безотказной работы по числу обнаруженных при испытаниях отказов
- •8.4. Основы организации контрольных испытаний
- •9. Основные принципы обеспечения качества промышленной продукции
- •9.1. Современная концепция обеспечения качества продукции
- •Наименование детали
- •Два подхода к контролю за качеством продукции
- •Заключение
Коэффициент сохранения эффективности
Для сложных систем с множеством состояний работоспособности часто задаются требования поддержания определенного значения показателя эффективности работы.
Согласно ГОСТ 27.003-90 для таких систем в качестве комплексного показателя надежности может быть использован показатель Кэф - коэффициент сохранения эффективности [2.3].
,
(2.37)
где W1 - эффективность системы с учетом имеющихся отказов элементов,
W2 - эффективность системы при отсутствии каких–либо отказов (номинальная эффективность).
В зависимости от назначения системы эффективность определяется по-разному. Например, для АСУ ТП тепловых и атомных энергоблоков эффективность может определяться мощностью энергии, вырабатываемой блоком за календарное время. Для банковской сети в качестве показателя эффективности может быть принята вероятность выполнения интегрированных платежных и информационных услуг по произвольному требованию.
Библиографический список
Гнеденко Б.В. Математические основы теории надежности / Б.В. Гнеденко, Ю.К. Беляев, А.Д. Соловьев. М.: Наука, 1966.
Голинкевич Т.А. Прикладная теория надежности: учебник для вузов / Т.А. Голинкевич. М.: Высшая школа, 1977.
Ястребенецкий М.А. Надежность автоматизированных систем управления технологическими процессами / М.А. Ястребенецкий, Г.М. Иванова. М.: Энергоатомиздат, 1989.
Иыуду К.А. Надежность, контроль и диагностика вычислительных машин и систем. / К.А. Иыуду. М.: Высшая школа, 1989.
3. Математические модели надежности аппаратуры асоиу
Выбор модели надежности – зависимости показателей надежности от времени – является сложной научно-технической проблемой. Она может быть удовлетворительно решена стандартными методами математической статистики, если имеется большой статистический материал об отказах исследуемых объектов. Но из-за высокой надежности элементной базы, на основе которой проектируется аппаратура АСОИУ, как правило, статистических данных об отказах недостаточно. В этом случае в качестве математических моделей надежности объектов используют известные законы распределений случайных величин, случайных процессов и потоков событий с малым числом параметров [3.1, 3.2, 3.3 , 3.4].
К таким моделям относятся экспоненциальное, гамма и нормальное распределения непрерывных случайных величин, биномиальное и пуассоновское распределения дискретных случайных величин, простейший поток отказов, однородные марковские процессы.
Указанные модели применяются при априорных расчетах показателей надежности на этапе проектирования систем (элементов) для сравнения варианта – прототипа объекта с новым, разрабатываемым вариантом. При этом модель объективно реагирует на изменение в надежности сравниваемых вариантов. Использование указанных моделей для окончательной оценки надежности эксплуатируемой системы является некорректным.