
- •Теория движения.
- •Глава 1. Материя и движение.
- •Глава II. Элементарное движение.
- •Глава III. Ансамбль форм движения.
- •Глава IV. Изменение состояния.
- •Глава V. Перенос движения.
- •Глава VI. Диссипация движения.
- •Глава VII. Увлечение движения.
- •Глава VIII. Разделение движения.
- •Глава iх. Взаимодействие потоков.
- •Глава I. Материя и движение.
- •§ 1. Определение понятий.
- •1. Материя.
- •2. Движение.
- •3. Общая, или единая, теория.
- •§ 2. Предварительная классификация движения.
- •1. Качественное изменение движения.
- •2. Количественное изменение движения.
- •Глава II. Элементарное движение.
- •§ 3. Что такое элементарное движение.
- •1. Бесконечное разнообразие элементарного движения.
- •2. Примеры.
- •3. Качественное своеобразие.
- •§ 4. Три главные количественные характеристики движения.
- •1. Количество движения.
- •2. Активность.
- •3. Обобщенная количественная мера.
- •§ 5. Количество движения (обобщенный заряд).
- •1. Бесконечное разнообразие зарядов.
- •2. Качественное своеобразие зарядов.
- •§ 6. Активность движения (обобщенный потенциал).
- •1. Бесконечное разнообразие потенциалов.
- •2. Качественное своеобразие потенциалов.
- •3. Активность движения.
- •4. Интенсивность процесса распространения заряда.
- •§ 7. Обобщенная количественная мера движения (энергия).
- •1. Бесконечное разнообразие потенциалов.
- •2. Энергия.
- •§ 8. Основной постулат общей теории.
- •1. Первый (главный) постулат.
- •2. Второй (дополнительный) постулат.
- •3. Третий (дополнительный) постулат.
- •4. Четвертый (дополнительный) постулат.
- •5. Пятый (дополнительный) постулат.
- •6. Основной (объединенный) постулат.
- •§ 9. Первый главный закон движения (сохранения энергии).
- •1. Система.
- •2. Вывод дифференциального уравнения состояния первого порядка.
- •3. Свойства и состояние системы.
- •4. Изменение энергии системы.
- •5. Количество переданного заряда.
- •6. Потенциал.
- •7. Работа.
- •8. Закон сохранения энергии.
- •9. Правило знаков.
- •§ 10. Примеры главных количественных характеристик движения.
- •1. Форма движения перемещательная, или метрическая.
- •2. Вращательная.
- •3. Деформационная.
- •4. Кинетическая перемещения, или импульсная.
- •5. Кинетическая вращения, или спиновая.
- •6. Механическая.
- •7. Гидродинамическая.
- •8. Фильтрационная.
- •9. Диффузионная.
- •10. Химическая, или субстанциальная.
- •11. Гравитационная.
- •12. Термическая.
- •13. Электрическая.
- •14. Магнитная.
- •15. Вибрационная.
- •16. Волновая, или дебройлевская.
- •27. Хрональная.
- •18. Информационная.
- •19. Ощущательные.
- •20. Общие замечания.
- •§ 11. Внешние и внутренние степени свободы системы.
- •1. Внешне изолированная система.
- •2. Внутренне изолированная система.
- •§ 12. Примеры дифференциальных уравнений
- •1. Уточнение смысла уравнений.
- •2. Изолированная система.
- •3. Система с несколькими внешними степенями свободы.
- •§ 13. Второй главный закон движения (сохранения заряда).
- •1. Вывод дифференциального уравнения закона.
- •2. Закон сохранения заряда.
- •3. Примеры применения закона.
- •Глава III. Ансамбль форм движения.
- •§ 14. Всеобщая связь явлений.
- •1. Ансамбль форм движения.
- •2. Главная и побочная формы движения.
- •3. Связь явлений.
- •4. «Безумные» теории.
- •§ 15. Микроскопический ансамбль зарядов,
- •1. «Элементарная» частица.
- •2. Структура частицы движения.
- •3. Принцип локальности.
- •§ 16. Макроскопический ансамбль зарядов.
- •1. Макроскопическое тело.
- •2. Всеобщая связь макроскопических явлений.
- •§ 17. Принципы проницаемости и отторжения.
- •1. Принцип проницаемости.
- •2. Принцип отторжения.
- •Глава IV. Изменение состояния.
- •§ 18. Третий главный закон движения (состояния).
- •1. Вывод дифференциального уравнения состояния второго порядка.
- •2. Вывод уравнения третьего порядка.
- •3. Вывод уравнения четвертого порядка.
- •4. Формулировка закона.
- •5. Основные и перекрестные коэффициенты.
- •§ 19. Четвертый главный закон движения (взаимности).
- •1. Дифференциальное уравнение закона.
- •2. Формулировка закона.
- •§ 20. Емкость системы.
- •1. Емкость по отношению к заряду.
- •2. Свойства более высоких порядков.
- •3. Другие виды емкости.
- •4. Примеры емкостей.
- •§ 21. Основные физические коэффициенты.
- •1. Определение понятия.
- •2. Примеры коэффициентов.
- •§ 22. Мировые константы.
- •1. Определение понятия.
- •2. Постоянны ли мировые константы.
- •§ 23. Идеальное тело.
- •1. Определение понятия.
- •2. Уравнение состояния идеального тела.
- •3. Теорема о нулевом значении заряда.
- •4. Термические уравнения состояния.
- •5. Примеры уравнений.
- •§ 24. Абсолютный нуль потенциала.
- •1. Определение понятия.
- •2. Физический вакуум.
- •3. Симметрия мира.
- •4. Достижимость абсолютного нуля потенциала.
- •5. Аннигиляция зарядов.
- •6. Переход через абсолютный нуль.
- •§ 25. Абсолютная бесконечность потенциала.
- •1. Определение понятия.
- •2. Границы изменения потенциала.
- •3. Границы изменения скорости объекта.
- •§ 26. Закон тождественности свойств.
- •1. Вывод и формулировка закона.
- •2. Примеры применения закона.
- •§ 27. Совместное применение четырех главных законов.
- •1. Энергия идеального тела.
- •2. Идеальный микроскопический ансамбль.
- •§ 28. Фотон.
- •1. Энергия фотона.
- •2. Уравнение состояния фотона.
- •3. Изменение мировых констант.
- •4. Фотонный газ.
- •§ 29. Электрон-частица.
- •1. Энергия частицы.
- •2. Уравнение состояния частицы.
- •3. Зависимость массы от скорости.
- •4. Электронный газ.
- •§ 30. Критерий подобия для микромира.
- •1. Критериальные уравнения.
- •2. Критерий с/е2.
- •Глава V. Перенос движения.
- •§ 31. Принципы притяжения и отталкивания.
- •1. Суть принципов.
- •2. Причина переноса движения.
- •§ 32. Поле потенциала.
- •1. Определение понятия.
- •2. Частные случаи.
- •§ 33. Напор и градиент потенциала.
- •1. Напор потенциала.
- •2. Перепад потенциала.
- •3. Градиент потенциала.
- •4. Напряженность, или сила, поля.
- •§ 34. Пятый главный закон движения (переноса).
- •1. Вывод обращенного дифференциального уравнения состояния.
- •2. Физический смысл обращенных уравнений.
- •3. Микроскопическая система.
- •4. Макроскопическая система.
- •5. Частные формы макроскопических уравнений.
- •6. Связь между разноименными частными потоками и силами.
- •7. Теорема Кюри.
- •§ 35. Проводимость системы.
- •1. Определение проводимости.
- •2. Сопротивление системы.
- •§ 36. Сверхпроводимость.
- •1. Определение понятия.
- •2. Сверхэлектропроводность.
- •3. Сверхмагнитопроводность.
- •4. Сверхтекучесть.
- •5. Сверхтеплопроводность.
- •6. Предсказание общей теорией новых явлений сверхпроводимости.
- •§ 37. Примеры применения уравнений закона переноса.
- •2. Известные законы.
- •3. Новые законы.
- •4. Несколько степеней свободы.
- •§ 38. Нестационарный режим переноса.
- •2. Две степени свободы.
- •3. Общий случай.
- •§ 39. Неподвижный и подвижный заряд.
- •1. Разница между неподвижным и подвижным зарядом.
- •2. Возникающие эффекты.
- •§ 40. Примеры нестационарных уравнений.
- •1. Известные уравнения.
- •2. Термические явления.
- •§ 41. Распространение нанозаряда (поля).
- •1. Постановка задачи.
- •2. Уравнения закона переноса.
- •3. Индукция поля.
- •4. Влияние конфигурации заряда.
- •§ 42. Принцип стабильности.
- •1. Формулировка принципа.
- •2. Три класса полей.
- •§ 43. Теорема о суммировании зарядов.
- •1. Дополнение к закону состояния.
- •2. Содержание теоремы.
- •3. Теорема Остроградского-Гаусса.
- •4. Принцип суперпозиции.
- •§ 44. Нестационарные поля.
- •1. Уравнение нестационарного переноса нанозаряда.
- •2. Свойства уравнения.
- •§ 45. Методы определения наносвойств.
- •1. Постановка задачи.
- •2. Плоское поле.
- •3. Определение нанодиффузивности.
- •4.Цилиндрические и сферические поля.
- •§ 46. Уравнения Максвелла.
- •1. Общий вид уравнений.
- •2. Вывод уравнений.
- •3. Анализ уравнений.
- •§ 47. Преобразования Лоренца.
- •1. Общий вид преобразований.
- •2. Принцип относительности.
- •3. Анализ преобразований Лоренца.
- •4. Анализ принципа относительности.
- •5. Эффект близнецов.
- •6. Влияние скорости на массу.
- •7. Зависимость длины от скорости.
- •§ 48. Закон отношения проводимостей.
- •1. Вывод дифференциального уравнения закона.
- •2. Формулировка закона.
- •§ 49. Закон Видемана-Франца.
- •1. Вывод закона.
- •2. Анализ закона.
- •§ 50. Шестой главный закон движения (увлечения).
- •1. Вывод вспомогательных формул.
- •2. Дифференциальное уравнение закона.
- •3. Формулировка закона.
- •Глава VI. Диссипация движения.
- •§ 51. Седьмой главный закон движения (диссипации).
- •1. Вывод дифференциального уравнения закона.
- •2. Термическая работа, или теплота, диссипации.
- •3. Формулировка закона.
- •§ 52. Примеры применения закона.
- •1. Закон сохранения энергии Майера.
- •2. Закон Джоуля-Ленца.
- •3. Гидродинамические явления.
- •4. Микро- и наномир.
- •5. Примеры неправильного применения закона диссипации.
- •§ 53. Термический заряд диссипации.
- •1. Количество заряда.
- •2. Скорость возникновения или уничтожения термического заряда и
- •§ 54. Необратимый и обратимый процессы.
- •1. Количественная мера необратимости.
- •2. Критерий необратимости.
- •3. Необратимый процесс.
- •4. Обратимый процесс.
- •§ 55. Закон минимальной диссипации.
- •1. Нестационарные условия.
- •2. Стационарные условия.
- •3. Равновесные условия.
- •4. Теорема Пригожина.
- •5. Принцип наименьшего действия.
- •6. Принцип наименьшей потенциальной энергии.
- •§ 56. Определение кванта термического заряда.
- •1. Определение с помощью законов Планка и Вина.
- •2. Определение с помощью закона Видемана-Франца.
- •3. Определение с помощью молекулярно-кинетической теории.
- •§ 57. Термический заряд и энтропия.
- •1. Свойства термического заряда.
- •2. Свойства энтропии.
- •3. Физический смысл энтропии.
- •§ 58. Понятие потока теплоты.
- •1. Особенность термической формы движения.
- •2. Поток термической работы, или теплоты.
- •3. Термический заряд, или энтропия, и теплота диссипации.
- •4. Скорость возникновения термического заряда, или энтропии,
- •§ 59. Напряженность и индукция поля.
- •1. Напряженность.
- •2. Индукция.
- •§ 60. Закон Хаббла.
- •1. Содержание закона.
- •2. Диссипативный характер закона.
- •3. Теория расширяющейся Вселенной.
- •§ 61. Радиус видимости Вселенной.
- •1. Определение понятия.
- •2. Вывод расчетных формул.
- •3. Обсуждение результатов.
- •§ 62. Дыхание Вселенной.
- •1. Влияние радиуса видимости.
- •2. «Дыхание» мировых констант.
- •§ 63. Полевые парадоксы Вселенной.
- •1. Происхождение парадоксов.
- •2. Объяснение парадоксов.
- •§ 64. Фотометрический парадокс Шезо-Ольберса.
- •1. Содержание парадокса.
- •2. Объяснение парадокса.
- •§ 65. Гравитационный парадокс Неймана-Зеелигера.
- •1. Содержание парадокса.
- •2. Объяснение парадокса.
- •Глава VII. Увлечение движения.
- •§ 66. Закон отношения потоков.
- •1. О новой форме движения.
- •2. Вывод дифференциального уравнения закона.
- •2. Формулировка закона.
- •§ 67. Примеры применения закона.
- •1. Расчетные формулы.
- •2. Анализ результатов.
- •§ 68. Законы Фарадея.
- •1. Первый закон Фарадея.
- •2. Второй закон Фарадея.
- •§ 69. Тепловой эффект химической реакции.
- •1. Расчетная формула.
- •2. Результаты экспериментов.
- •§ 70. Закон Трутона.
- •1. Содержание закона.
- •2. Анализ результатов.
- •§ 71. Закон эквивалентности массы и энергии.
- •1. Вывод уравнения закона.
- •2. Анализ результатов.
- •Глава VIII. Разделение движения.
- •§ 72. Эффект разделения.
- •1. Характеристика новой формы движения.
- •2. Расчетные формулы.
- •§ 73. Примеры эффектов.
- •1. Эффект Соре.
- •2. Эффект Дюфора.
- •3. Прочие эффекты.
- •Глава IX. Взаимодействие потоков.
- •§ 74. Линейный эффект.
- •1. Особенности новой формы движения.
- •2. Работа линейного заряжания.
- •3. Эффект линейной диссипации.
- •§ 75. Термоэлектрические явления.
- •1. Расчетные формулы.
- •§ 76. Контактный эффект.
- •1. Контактная разность потенциалов.
- •2. Работа контактного заряжания.
- •3. Эффект контактной диссипации.
- •4. Контактная движущая сила.
- •§ 77. Примеры явлений.
- •1. Термоэлектрические явления.
- •2. Прочие явления.
- •§ 78. Дифференциальное уравнение взаимодействия.
- •1. Особенности новой формы движения.
- •2. Теоретический метод.
- •3. Условия однозначности.
- •4. Граничные условия.
- •5. Вывод дифференциального уравнения взаимодействия.
- •6. Экспериментальный метод.
- •7. Смешанный метод.
- •§ 79. Классификация состояний системы.
- •1. Стационарная равновесная система.
- •2. Стационарная неравновесная система.
- •3. Нестационарная равновесная система.
- •4. Нестационарная неравновесная система.
- •§ 80. Статика, кинетика, статодинамика, динамика.
- •1. Статика.
- •2. Кинетика.
- •3. Статодинамика.
- •4. Кинетодинамика, или динамика.
- •§ 81. Примеры взаимодействий.
- •1. Заряжание системы.
- •2. Обмен между двумя системами.
- •3. Приближенный метод.
- •§ 82. Закон силового взаимодействия зарядов.
- •1. Постановка задачи.
- •2. Вывод расчетных формул.
- •3. Анализ результатов.
- •§ 83. Закон тяготения Ньютона.
- •1. Содержание закона.
- •2. Обсуждение закона.
- •§ 84. Законы Кулона.
- •1. Закон взаимодействия электрических зарядов.
- •2. Закон взаимодействия магнитных зарядов.
- •3. Обсуждение законов.
- •§ 85. Классическая термодинамика Клаузиуса.
- •1. Основные законы термодинамики Клаузиуса.
- •2. Обсуждение основных идей.
- •3. Термодинамика Клаузиуса и перенос.
- •§ 86. Термодинамика необратимых процессов Онзагера.
- •1. Основные законы термодинамики Онзагера.
- •2. Выбор потоков и сил по Онзагеру.
- •3. Обсуждение основных идей.
- •4. Термодинамика Онзагера и перенос.
- •§ 87. Теория теплообмена.
- •1. Основные законы теории.
- •2. Обсуждение основных идей.
- •§ 88. Химия.
- •1. Общие соображения.
- •2. Тройная мономолекулярная реакция.
- •3. Анализ известных решений.
- •4. Химия, термодинамика и общая теория.
- •§ 89. Механика.
- •1. Механика Ньютона.
- •2. Механика Эйнштейна.
- •3. Механика квантовая.
- •§ 90. Правила выбора зарядов (и потенциалов).
- •1. О свободе выбора.
- •2. Свойства заряда и потенциала.
- •3. Правила выбора.
- •4. Примеры выбора.
- •§ 91. Основные законы движения.
- •1. Особенности новой формы движения.
- •2. Одна степень свободы.
- •3. Несколько степеней свободы.
- •4. Взаимные преобразования активностей движения.
- •5. Обобщенный цикл Карно.
- •6. Замкнутый и разомкнутый циклы.
- •§ 92. Примеры явлений.
- •1. Круговое увлечение.
- •2. Тепловые двигатели.
- •§ 93. Описание явления.
- •1. Особенности термодинамической пары.
- •2. Фильтрационная пара.
- •§ 94. Теория пары.
- •1. Обобщенная пара.
- •2. Полная движущая сила.
- •3. Эффект возникновения фиктивной движущей силы.
- •4. Частные случаи.
- •§ 95. Теория термоэлектричества Томсона.
- •1. Содержание теории.
- •2. Анализ теории.
- •§ 96. Фильтрационные пары.
- •1. Термофильтрационная.
- •2. Электрофильтрационная.
- •3. Диффузионнофильтрационная.
- •4. Поверхностнофильтрационная.
- •5. Вибро- поверхностнофильтрационная.
- •6. Термо-электрофильтрационная.
- •7. Поверхностно-термо-диффузионнофильтрационная.
- •§ 97. Формула Лапласа.
- •1. Вид формулы.
- •2. Обсуждение формулы.
- •§ 98. Формула Стефана.
- •1. Вид формулы.
- •2. Результаты экспериментов.
- •3. Обсуждение результатов.
- •§ 99. Диффузионные пары.
- •1. Термодиффузионная.
- •2. Электродиффузионная.
- •§ 100. Прочие пары.
- •1. Химикоэлектрическая.
- •2. Прочие пары.
- •§ 101. Особенности явления.
- •1. Общие соображения.
- •2. Управление с обратной связью.
- •§ 102. Теория информации.
- •1. Роль информации.
- •2. Законы, которым подчиняется информация.
- •§ 103. Характеристика явления.
- •1. Об особенностях движения.
- •2. Постановка задачи.
- •§ 104. Связь ощущений.
- •1. Об ощущательных формах движения.
- •2. Связь ощущений.
- •§ 105. Взаимодействие зрительных ощущений.
- •1. Кибернетический колорист.
- •§ 106. Управление процессами обмена.
- •1. Общие соображения.
- •2. «Электрические» сады и огороды.
- •3. «Музыкальные» сады и огороды.
- •4. Животный организм.
- •§ 107. Функционирование живого организма.
- •1. Воздействие на наследственность организма.
- •2. Принудительная тренировка.
- •3. Энтропия и жизнь.
- •§ 108. Признаки классификации.
- •1. Покой и движение.
- •2. Макро- и микродвижение.
- •3. Качество и количество движения.
- •§ 109. Классификация по сложности движения.
- •1. Общие соображения.
- •2. Ступени усложняющегося движения.
- •§ 110. Классификация по количеству движения.
- •1. Общие соображения.
- •2. Количественные ступени движения.
4. Влияние конфигурации заряда.
Предположим, что нанозаряд излучается неограниченной плоской стенкой толщиной 2r0, бесконечно длинным круглым цилиндром и шаром радиуса r0. Необходимо установить характер изменения градиента потенциала (напряженности или индукции) с расстоянием r (рис. 12). Этот вопрос имеет принципиальное значение для дальнейшего.
Рис. 12. Распределение потенциала вблизи неограниченной плоской
стенки (слева), бесконечно длинного цилиндра и шара (справа).
Согласно закону сохранения заряда, на стационарном режиме за единицу времени через любое сечение поля с координатой r (величина переменная) проходит одно и то же количество заряда. В случае плоской стенки площадь сечения F не зависит от r. Следовательно, при постоянных dЕнан и F градиент потенциала (dР/dх) также является величиной постоянной, не зависящей от r [формула (370)] и равной градиенту (dР/dх)0 на поверхности (при r = r0) заряда, т.е.
dР/dх = (dР/dх)0 = const. (381)
В случае цилиндра площадь сечения пропорциональна радиусу:
F = 2rl м2,
где l - длина цилиндра.
Написав уравнение (370) для двух радиусов r0 и r и приравняв величины зарядов, получим
dР/dх = (dР/dх)0(r0/r). (382)
В цилиндрическом поле градиент потенциала обратно пропорционален радиусу.
В случае шара
F = 4r2 м2.
Следовательно, градиент потенциала в точке с координатой r связан с градиентом в точке r0 соотношением
dР/dх = (dР/dх)0(r02/r2). (383)
В сферическом поле градиент потенциала обратно пропорционален квадрату радиуса. Точно таким же образом изменяется удельный поток J нанозаряда.
Природа отмеченного явления (уменьшения с расстоянием r потока J для цилиндрического и сферического полей) объясняется чисто геометрическими соображениями – возрастанием площади F с радиусом r. Одновременно убывают градиенты потенциалов, напряженности, индукции и действующие на заряд силы. Сравнение характера изменения потенциала и градиента потенциала с расстоянием r для плоского, цилиндрического и сферического полей показано на рис. 13. Потенциал быстрее всего уменьшается у плоского поля, а градиент потенциала – у сферического поля.
Рис. 13. Сравнение кривых распределения потенциала (слева) и градиента потенциала вблизи пластины (прямая 1), цилиндра (кривая 2) и шара (кривая 3).
Разумеется, все эти соотношения справедливы только в условиях, когда пространство обладает континуальными свойствами, т.е. при большом числе метронов, и когда поток пространства заметно не искривляется, т.е. вблизи него нет больших зарядов различного рода.
§ 42. Принцип стабильности.
1. Формулировка принципа.
При изучении конфигурации полей потенциала можно обнаружить одну особенность, которая заключается в стремлении любого поля выровняться, приобрести вдали от источника одну из рассмотренных выше простых конфигураций – плоскую, цилиндрическую или сферическую. Это свойство полей будем именовать принципом стабильности потока заряда.
Частный случай этого принципа известен в гидродинамике. В потоке вязкой жидкости вдали от входа в канал всегда устанавливается определенное распределение скоростей по сечению, не зависящее от распределения скоростей на входе. Это свойство именуется свойством стабильности потока вязкой жидкости.
В теории упругости известен также принцип Сен-Венана (1855), согласно которому замена одной системы усилий, действующих на небольшую часть поверхности упругого тела, другой, статически эквивалентной системой усилий, действующих на ту же часть поверхности тела, вызывает значительные изменения только местных напряжений, не сказываясь заметно на напряжениях в точках, достаточно удаленных от поверхности, на которой усилия были изменены.
Наконец, автором аналогичное свойство стабильности было обнаружено у температурных полей [2, 3].
В общем случае принцип стабильности справедлив для любых форм движения. Любое поле вдали от источника стремится стать одномерным – плоским, цилиндрическим или сферическим. Это стремление поля легко понять, если вспомнить, что неоднородность поля обусловлена неодинаковыми количествами заряда, содержащегося в различных участках поля. Это вызывает появление выравнивающих потоков. В результате поле становится практически одномерным. Полностью выровняться (стать однородным) ему мешает источник.
Примером
может служить поле, изображенное на
рис. 14. На некотором расстоянии от
источников поле делается приблизительно
сферическим (если источники – шары) или
цилиндрическим (если источники –
цилиндры).
Рис. 14. Изопотенциальные линии, расположенные вокруг двух
одноименных шаровых (или цилиндрических) зарядов.
Принцип стабильности формулируется следующим образом: если на некотором участке поверхности заряда изменить характер распределения условий излучения поля без изменения общей величины потока нанозаряда, то это практически не отразится на поле потенциала вдали от рассматриваемого участка. В частном случае условия излучения могут изменяться путем изменения конфигурации заряда или применения дискретной системы зарядов.