Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по физике колледж.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
700.3 Кб
Скачать

Сила Лоренца (задачи)

1 3.58. Точечный заряд q = 2×10-5 Кл влетает со скоростью v0 = 5 м/с в однородное магнитное поле с индукцией В = 2 Тл. Векторы скорости и магнитной индукции составляют угол а = 45° (рис. 13.19). Определить модуль и направление силы, действующей на заряд.

13.59. Протон движется со скоростью v = 106 м/с перпендикулярно однородному магнитному полю с индукцией В = 1 Тл. Найти силу, дей­ствующую на протон, и радиус окружности, по которой он движется.

13.60. Электрон описывает в магнитном поле окружность радиусом R = 4 мм. Скорость электрона - v=3,6×106 м/с. Найти индукцию магнит­ного поля.

13.61. Электрон движется в однородном магнитном поле с индукцией В = 0,1 Тл перпендикулярно линиям поля. Определить силу, действую­щую на электрон со стороны поля, если радиус кривизны траектории R=0,5 см.

13.62. Определить частоту обращения электрона по круговой орбите в магнитном поле, индукция которого В = 0,2 Тл.

13.63. Электрон влетает в однородное магнитное поле перпендикулярно силовым линиям. Скорость электрона v = 4 • 107 м/с, индукция магнит­ного поля В = 1 мТл. Определить нормальное, тангенциальное ускоре­ние электрона и радиус кривизны его траектории.

13.64. Электрон в однородном магнитном поле с индукцией В = 0,1 Тл движется по окружности. Найти силу кругового тока I, созда­ваемого движущимся электроном.

13.66. Электрон движется в однородном магнитном поле с индукци­ей В = 0,015 Тл но окружности радиусом R = 10 см. Определить импульс электрона.

13.67. Электрон движется в магнитном поле с индукцией В = 0,02 Тл по окружности радиусом R =1 см. Определить кинетическую энергию Ек электрона (в джоулях и электрон-вольтах).

13.68. Заряженная частица с кинетической энергией Ек = 1 кэВ дви­жется в однородном магнитном поле по окружности радиусом R = 1 мм. Найти силу, действующую на частицу со стороны поля.

13.70. Определить радиус кривизны траектории электрона в камере Вильсона, помещенной в магнитное поле с индукцией В = 0,007 Тл, если энергия электрона Ек = 3,9×103 эВ.

13.73. Частица массой т = 6×10-12 кг и зарядом q = 3×10-10 Кл движется в однородном магнитном поле с индукцией В = 10 Тл. Кинетическая энергия частицы Ек = 10-6Дж. Какой путь пройдет частица за время, в течение которого ее скорость из­менит направление на угол а = 180°? Магнитное поле перпендикулярно скорости частицы.

13.74. Электрон влетает перпендикулярно направлению магнитного поля с индукцией В = 2,86×10-2 Тл со скоростью v=106 м/с. Определить изменение скорости электрона за промежуток времени ∆t =2,1×10-10 с.

Основные положения электромагнитной теории Максвелла. Электромагнитная индукция. Опыт Фарадея.

Теория электромагнитного поля Максвелла

(записать в тетрадь полностью, так как это будет ответом на 1 из экзаменационных вопросов)

Это последовательная теория единого электромагнитного поля, создаваемого произвольной системой зарядов и токов.

В ней решается основная задача электродинамики:

По заданному распределению зарядов и токов отыскиваются основные характеристики создаваемых ими электрических и магнитных полей.

Это феноменологическая теория, то есть она не рассматривает механизмы явлений, происходящих в среде и вызывающих появление полей.

Электрические и магнитные свойства среды характеризуются следующими параметрами:

ε – относительной диэлектрической проницаемостью

μ – относительной магнитной проницаемостью

σ – удельной электрической проводимостью

В теории Максвелла рассматриваются макроскопические поля, которые:

- создаются зарядами и токами в объемах много больших, чем объемы атомов и молекул;

- расстояние от источников полей до рассматриваемой точки пространства много больше размеров атомов и молекул;

- период изменения переменных электрических и магнитных полей много больше периода внутримолекулярных процессов.

Макроскопические заряды и токи являются совокупностью микроскопических зарядов и токов, которые создают свои микрополя непрерывно во времени в любой точке пространства.

Макроскопические поля являются усредненными микрополями:

- по интервалам времени много большим, чем периоды внутриатомных процессов;

- по объемам много большим, чем объемы атомов и молекул.

Теория Максвелла – это теория близкодействия, то есть электромагнитные взаимодействия распространяются с конечной скоростью, равной скорости света.

Вся совокупность законов электромагнитного поля может быть выражена в виде системы уравнений, которая называется системой уравнений Максвелла.

Основные положения теории Максвелла:

  1. Переменное магнитное поле порождает в окружающем пространстве вихревое электрическое поле.

  2. Переменное электрическое поле порождает в окружающем пространстве переменное магнитное поле.

Электромагнитная индукция

В 1821 г. Майкл Фарадей записал в своем дневнике: «Пре­вратить магнетизм в электричество». Через 10 лет эта задача была им решена.

В 1831 году М. Фарадей обнаружил, что вокруг проводника с током существует магнитное поле. Ответом на вопрос, может ли магнитное поле порождать электрический ток в проводнике, находящемся в этом поле, стало установление закона электромагнитной индукции.

В замкнутом контуре с помощью изменяющегося магнитного поля можно создать электрический ток (создать ЭДС) тремя способами:

  1. Двигая магнит относительно контура.

  2. Двигая контур относительно магнита.

  3. Меня ток в соседнем контуре.

Во всех трех ситуациях контур пронизывает переменное магнитное поле.

Явление возникновения ЭДС в замкнутом контуре при пронизывании его переменным магнитным полем называют магнитной индукцией.

ЭДС индукции может возникать и в незамкнутом проводнике при его движении в магнитном поле.

Открытие Фарадея

Не случайно первый и самый важный шаг в открытии но­вых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле — Фарадеем. Фарадей был уверен в единой природе электриче­ских и магнитных явлений. Вскоре после открытия Эрстеда он писал: «...представляется весьма необычным, чтобы, с од­ной стороны, всякий электрический ток сопровождался маг­нитным действием соответствующей интенсивности, направ­ленным под прямым углом к току, и чтобы в то же время в хо­роших проводниках электричества, помещенных в сферу это­го действия, совсем не индуцировался ток, не возникало какое-либо ощутимое действие, эквивалентное по силе такому току». Упорный труд в течение десяти лет и вера в успех при­вели Фарадея к открытию, которое впоследствии легло в осно­ву устройства генераторов всех электростанций мира, превра­щающих механическую энергию в энергию электрического тока. (Источники, работающие на других принципах: гальва­нические элементы, аккумуляторы, термо- и фотоэлементы — дают ничтожную долю вырабатываемой электрической энер­гии.)

Долгое время взаимосвязь электрических и магнитных яв­лений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле мо­жет возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.

О ткрытие электромагнитной индукции, как назвал Фарадей это явление, было сделано 29 августа 1831 г. Редкий случай, когда столь точно известна дата нового заме­чательного открытия. Вот краткое описание первого опыта, данное самим Фарадеем.

«

Рис 5.1

Рис 5.2

На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлоп­чатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая — с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непре­рывном же прохождении тока через одну из спиралей не уда­валось отметить ни действия на гальванометр, ни вообще ка­кого-либо индукционного действия на другую спираль, несмотря на то, что нагревание всей спирали, соединенной с бата­реей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».

И

Рис 5.2

так, первоначально была открыта индукция в неподвиж­ных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемеще­нии катушек относительно друг друга (рис. 5.1). Знакомый с трудами Ампера, Фарадей понимал, что магнит — это сово­купность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журна­ле, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 5.2). В течение од­ного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции. Оста­валось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления.

У жо сам Фарадей уловил то общее, от чего зависит появле­ние индукционного тока в опытах, которые внешне выглядят по-разному.

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизываю­щих поверхность, ограниченную этим контуром.

И

Рис 5.3

чем бы­стрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, прони­зывающих неподвижный проводник вследствие

изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном по­ле, густота линий которого меняется в пространстве (рис. 5.3).

Ф

Рис 5.4

арадей не только открыл явление, но и первым сконстру­ировал несовершенную пока еще модель генератора электри­ческого тока, превращающего механическую энергию враще­ния в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита (рис. 5.4). Присоединив ось и край диска к гальванометру, Фарадей обнаружил отклонение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.

В проводящем замкнутом контуре возникает электриче­ский ток, если контур находится в переменном магнит­ном поле или движется в постоянном во времени поле так, что число линий магнитной индукции, пронизываю­щих контур, меняется. Это явление называется элек­тромагнитной индукцией.

Вопросы к тексту:

  1. Кто открыл электромагнитную индукцию?

  2. Где используется явление электромагнитной индукции?

  3. Каким образом можно возбудить электрический ток в катушке?

  4. Какая индукция была открыта первоначально и каким образом?

  5. Из-за чего в замкнутом контуре возникает электрический ток?

  6. От чего зависит ток, возникающий в замкнутом контуре?

  7. Почему электромагнитная индукция возбуждается в катушке, движущейся в магнитном поле?

  8. Каким образом можно с помощью изменяющегося магнитного поля создать электрический ток?

  9. От чего зависит магнитный поток, пронизывающий замкнутый контур?