
- •1. Электростатическое поле в вакууме
- •1.1 Дискретность электрического заряда. Закон сохранения электрического заряда
- •1.2 Закон Кулона. Напряженность электрического поля
- •1.3. Расчёт напряжённости поля точечного заряда и электрического диполя
- •1.3.1. Напряженность поля точечного заряда
- •1.3.2. Напряженность поля электрического диполя
- •А. Напряженность поля в точке, находящейся на продолжении оси диполя
- •1.4. Силовые линии. Поток вектора напряженности. Теорема Остроградского-Гаусса
- •1.5. Применение теоремы Остроградского-Гаусса для расчета полей
- •1.5.1. Поле бесконечной равномерно заряженной плоскости
- •11.5.2. Поле двух бесконечных равномерно заряженных плоскостей
- •11.5.3. Напряженность поля бесконечной равномерно заряженной нити с линейной плотностью заряда
- •11.6. Работа по перемещению заряда в электростатическом поле. Теорема о циркуляции вектора
- •11.7. Связь между напряженностью поля и потенциалом
- •2. Электростатическое поле в диэлектрике
- •2.1. Поляризация диэлектриков
- •2.2. Полярные и неполярные молекулы
- •2.2.1. Неполярная молекула во внешнем электростатическом поле
- •2.2.2. Полярная молекула во внешнем электростатическом поле
- •2.3. Классификация диэлектриков
- •2.4. Поляризованность. Вектор электрического смещения
- •2.4.1 Поляризованность
- •2.4.2. Связь между поляризованностью и поверхностной плотностью связанных зарядов
- •12.4.3. Связь между поляризованностью и напряжённостью поля
- •12.4.4. Вектор электрического смещения
- •12.4.5. Связь между векторами , и .
- •2.5. Нелинейные диэлектрики
- •2.5.1. Сегнетоэлектрики
- •2.5.2. Электреты
- •2.5.3. Пироэлектрики
- •3. Проводники в электростатическом поле
- •3.1. Условия на границе металл – вакуум
- •13.2. Напряжённость поля вблизи поверхности заряженного проводника
- •13.3. Электроёмкость уединённого тела и системы тел
- •13.3.1. Плоский конденсатор
- •13.3.2. Цилиндрический конденсатор
- •14. Энергия электростатического поля
- •14.1. Энергия системы точечных зарядов
- •14.2. Энергия заряженного проводника
- •14.3. Энергия заряженного конденсатора. Плотность энергии электростатического поля
- •15. Постоянный электрический ток
- •15.1. Сила и плотность тока
- •15.2. Условия существования тока. Сторонние силы. Эдс
- •15.3. Закон Ома
- •15.3.1. Закон Ома для неоднородного участка цепи
- •15.3.2. Закон Ома для полной цепи
- •15.3.3. Закон Ома для однородного участка цепи
- •15.3.4. Закон Ома в дифференциальной форме
- •15.4. Закон Джоуля-Ленца
- •15.4.1. Закон Джоуля-Ленца в интегральной форме
- •15.4.2. Закон Джоуля-Ленца в дифференциальной форме
- •15.5. Обоснование законов Ома и Джоуля-Ленца по классической электронной теории
- •15.6. Правила Кирхгофа
- •16. Контактные и термоэлектрические явления
- •16.1. Работа выхода
- •16.2. Контактная разность потенциалов
- •16.3. Эффект Зеебека
- •16.4. Эффект Пельтье
- •17. Магнитное взаимодействие
- •17.1. Магнитное взаимодействие движущихся электрических зарядов
- •17.2. Сопоставление электрического и магнитного взаимодействий
- •17.4. Магнитное поля прямолинейного проводника с током
- •17.5. Магнитное поле кругового тока
- •17.6. Циркуляция вектора
- •17.17. Магнитное поле тороида, соленоида
- •17.8. Сила Лоренца
- •17.9. Эффект Холла
- •17.10. Сила Ампера
- •17.11. Поток вектора магнитной индукции
- •17.12. Магнитная цепь
- •17.13. Работа по перемещению проводника с током в магнитном поле
- •18.1. Эдс индукции. Правило Ленца
- •18.2. Фарадеевская трактовка явления электромагнитной индукции
- •18.3. Максвелловская трактовка явления электромагнитной индукции
- •18.4. Явления самоиндукции и взаимной индукции
- •18.5. Индуктивность тороида
- •18.6. Плотность энергии магнитного поля
- •18.7. Экстратоки замыкания и размыкания
- •18.8 Токи Фуко. Скин-эффект
- •20. Теория Максвелла
- •20.1. Ток смещения
- •20.2. Полная система уравнений Максвелла
- •19. Магнитные свойства веществ
- •19.1. Гипотеза Ампера
- •19.2. Магнитные моменты атомов
- •19.3. Вектор намагниченности
- •19.4. Слабо магнитные вещества
- •19.5. Сильномагнитные вещества
- •19.5.1. Ферромагнетики
- •19.5.2. Ферримагнетики
- •19.5.3. Антиферромагнетики
- •19.5.4. Магнитные материалы
- •21.14. Вынужденные электромагнитные колебания
- •21.14.1. Омическое сопротивление в цепи переменного тока
- •21.14.2. Индуктивность в цепи переменного тока
- •21.14.3. Емкость в цепи переменного тока
- •24.1. Уравнение плоской электромагнитной волны
- •24.2. Вектор Умова – Пойнтинга
- •24.3. Особенности распространения электромагнитных волн
- •24.4. Световые волны
- •Законы преломления
- •25.1. Когерентные источники в оптике
- •25.2. Расчет интерференционной картины от двух когерентных источников
- •25.3. Интерференция в тонких пленках
- •25.4. Стоячие волны
- •25.5. Интерферометры
- •26.1. Принцип Гюйгенса-Френеля. Расчет дифракционной картины методом зон Френеля
- •26.2. Дифракция сферических волн (дифракция Френеля)
- •26.3. Дифракция плоских волн (Дифракция Фраунгофера)
- •26.4. Дифракционная решетка
- •27.1. Общие представления о поляризации световых волн
- •27.2. Поляризация света при отражении и преломлении
- •27.3. Двойное лучепреломление
- •27.4. Поляризационные приборы
- •27.5. Закон Малюса
- •27.6. Интерференция поляризованных лучей
- •27.7. Искусственная оптическая анизотропия
- •27.8. Вращение плоскости поляризации (оптическая активность)
- •27.9. Оптические и электрооптические свойства жидких кристаллов
- •28.1. Фазовая и групповая скорости света
- •28.2. Элементарная классическая теория дисперсии
- •28.3. Поглощение света
- •28.4. Рассеяние света
2.3. Классификация диэлектриков
Диэлектрики можно разбить на три класса – полярные, неполярные и ионные. К полярным относятся диэлектрики, молекулы которых обладают собственным (жестким) дипольным моментом; к неполярным – диэлектрики, молекулы которых не имеют собственного дипольного момента. Ионные диэлектрики представляют собой кристаллы с правильным чередованием ионов различных знаков (кристаллы NaCl, KCl и др.).
Соответственно трем классам диэлектриков различают три типа поляризации – ориентационную, деформационную и ионную.
Ориентационная поляризация характерна для полярных диэлектриков. При отсутствии внешнего поля (E=0) дипольные моменты молекул ориентированны хаотически (рис. 2.4, а). При наложении поля дипольные моменты стремятся выстроиться в направлении поля, однако этому препятствует тепловое движение молекул. В результате устанавливается преимущественная ориентация диполей, характеризуемая средним значением угла α (рис. 2.4, б), и на поверхности диэлектрика появляются связанные заряды, образованные положительными и отрицательными зарядами молекулярных диполей. Заметим, что чем сильнее электрическое поле и ниже температура, тем более четко проявляется преимущественная ориентация диполей.
Рис. 2.4
Механизм ионной поляризации состоит в том, что ионы кристаллической решётки под действием внешнего электрического поля смещаются в различных направлениях: положительные – в направлении вектора напряжённости , а отрицательные – навстречу. В результате на гранях кристалла, перпендикулярных к вектору , появляются разные по знаку связанные заряды.
2.4. Поляризованность. Вектор электрического смещения
2.4.1 Поляризованность
Количественной мерой степени поляризации диэлектрика является векторная величина, называемая поляризованностью. Поляризованность численно равна дипольному моменту единицы объёма вещества:
-
,
(2.8)
где
– геометрическая сумма дипольных
моментов всех частиц (молекул, атомов),
находящихся в объёме V.
Поскольку дипольный момент pe
измеряется в Кл·м,
то, как видно из (2.8), поляризованность
измеряется в Кл/м2,
что совпадает с единицей поверхностной
плотности заряда.
2.4.2. Связь между поляризованностью и поверхностной плотностью связанных зарядов
Рис. 2.5
В результате поляризации на торцах цилиндра появятся связанные заряды с поверхностной плотностью - и +. Дипольный момент цилиндра можно найти как сумму дипольных моментов всех частиц, находящихся в нём:
-
,
где V – объём цилиндра.
На основании (12.8) числовое значение поляризованности
.
Итак, поляризованность численно равна поверхностной плотности связанных зарядов
-
.
(2.9)