
- •1. Электростатическое поле в вакууме
- •1.1 Дискретность электрического заряда. Закон сохранения электрического заряда
- •1.2 Закон Кулона. Напряженность электрического поля
- •1.3. Расчёт напряжённости поля точечного заряда и электрического диполя
- •1.3.1. Напряженность поля точечного заряда
- •1.3.2. Напряженность поля электрического диполя
- •А. Напряженность поля в точке, находящейся на продолжении оси диполя
- •1.4. Силовые линии. Поток вектора напряженности. Теорема Остроградского-Гаусса
- •1.5. Применение теоремы Остроградского-Гаусса для расчета полей
- •1.5.1. Поле бесконечной равномерно заряженной плоскости
- •11.5.2. Поле двух бесконечных равномерно заряженных плоскостей
- •11.5.3. Напряженность поля бесконечной равномерно заряженной нити с линейной плотностью заряда
- •11.6. Работа по перемещению заряда в электростатическом поле. Теорема о циркуляции вектора
- •11.7. Связь между напряженностью поля и потенциалом
- •2. Электростатическое поле в диэлектрике
- •2.1. Поляризация диэлектриков
- •2.2. Полярные и неполярные молекулы
- •2.2.1. Неполярная молекула во внешнем электростатическом поле
- •2.2.2. Полярная молекула во внешнем электростатическом поле
- •2.3. Классификация диэлектриков
- •2.4. Поляризованность. Вектор электрического смещения
- •2.4.1 Поляризованность
- •2.4.2. Связь между поляризованностью и поверхностной плотностью связанных зарядов
- •12.4.3. Связь между поляризованностью и напряжённостью поля
- •12.4.4. Вектор электрического смещения
- •12.4.5. Связь между векторами , и .
- •2.5. Нелинейные диэлектрики
- •2.5.1. Сегнетоэлектрики
- •2.5.2. Электреты
- •2.5.3. Пироэлектрики
- •3. Проводники в электростатическом поле
- •3.1. Условия на границе металл – вакуум
- •13.2. Напряжённость поля вблизи поверхности заряженного проводника
- •13.3. Электроёмкость уединённого тела и системы тел
- •13.3.1. Плоский конденсатор
- •13.3.2. Цилиндрический конденсатор
- •14. Энергия электростатического поля
- •14.1. Энергия системы точечных зарядов
- •14.2. Энергия заряженного проводника
- •14.3. Энергия заряженного конденсатора. Плотность энергии электростатического поля
- •15. Постоянный электрический ток
- •15.1. Сила и плотность тока
- •15.2. Условия существования тока. Сторонние силы. Эдс
- •15.3. Закон Ома
- •15.3.1. Закон Ома для неоднородного участка цепи
- •15.3.2. Закон Ома для полной цепи
- •15.3.3. Закон Ома для однородного участка цепи
- •15.3.4. Закон Ома в дифференциальной форме
- •15.4. Закон Джоуля-Ленца
- •15.4.1. Закон Джоуля-Ленца в интегральной форме
- •15.4.2. Закон Джоуля-Ленца в дифференциальной форме
- •15.5. Обоснование законов Ома и Джоуля-Ленца по классической электронной теории
- •15.6. Правила Кирхгофа
- •16. Контактные и термоэлектрические явления
- •16.1. Работа выхода
- •16.2. Контактная разность потенциалов
- •16.3. Эффект Зеебека
- •16.4. Эффект Пельтье
- •17. Магнитное взаимодействие
- •17.1. Магнитное взаимодействие движущихся электрических зарядов
- •17.2. Сопоставление электрического и магнитного взаимодействий
- •17.4. Магнитное поля прямолинейного проводника с током
- •17.5. Магнитное поле кругового тока
- •17.6. Циркуляция вектора
- •17.17. Магнитное поле тороида, соленоида
- •17.8. Сила Лоренца
- •17.9. Эффект Холла
- •17.10. Сила Ампера
- •17.11. Поток вектора магнитной индукции
- •17.12. Магнитная цепь
- •17.13. Работа по перемещению проводника с током в магнитном поле
- •18.1. Эдс индукции. Правило Ленца
- •18.2. Фарадеевская трактовка явления электромагнитной индукции
- •18.3. Максвелловская трактовка явления электромагнитной индукции
- •18.4. Явления самоиндукции и взаимной индукции
- •18.5. Индуктивность тороида
- •18.6. Плотность энергии магнитного поля
- •18.7. Экстратоки замыкания и размыкания
- •18.8 Токи Фуко. Скин-эффект
- •20. Теория Максвелла
- •20.1. Ток смещения
- •20.2. Полная система уравнений Максвелла
- •19. Магнитные свойства веществ
- •19.1. Гипотеза Ампера
- •19.2. Магнитные моменты атомов
- •19.3. Вектор намагниченности
- •19.4. Слабо магнитные вещества
- •19.5. Сильномагнитные вещества
- •19.5.1. Ферромагнетики
- •19.5.2. Ферримагнетики
- •19.5.3. Антиферромагнетики
- •19.5.4. Магнитные материалы
- •21.14. Вынужденные электромагнитные колебания
- •21.14.1. Омическое сопротивление в цепи переменного тока
- •21.14.2. Индуктивность в цепи переменного тока
- •21.14.3. Емкость в цепи переменного тока
- •24.1. Уравнение плоской электромагнитной волны
- •24.2. Вектор Умова – Пойнтинга
- •24.3. Особенности распространения электромагнитных волн
- •24.4. Световые волны
- •Законы преломления
- •25.1. Когерентные источники в оптике
- •25.2. Расчет интерференционной картины от двух когерентных источников
- •25.3. Интерференция в тонких пленках
- •25.4. Стоячие волны
- •25.5. Интерферометры
- •26.1. Принцип Гюйгенса-Френеля. Расчет дифракционной картины методом зон Френеля
- •26.2. Дифракция сферических волн (дифракция Френеля)
- •26.3. Дифракция плоских волн (Дифракция Фраунгофера)
- •26.4. Дифракционная решетка
- •27.1. Общие представления о поляризации световых волн
- •27.2. Поляризация света при отражении и преломлении
- •27.3. Двойное лучепреломление
- •27.4. Поляризационные приборы
- •27.5. Закон Малюса
- •27.6. Интерференция поляризованных лучей
- •27.7. Искусственная оптическая анизотропия
- •27.8. Вращение плоскости поляризации (оптическая активность)
- •27.9. Оптические и электрооптические свойства жидких кристаллов
- •28.1. Фазовая и групповая скорости света
- •28.2. Элементарная классическая теория дисперсии
- •28.3. Поглощение света
- •28.4. Рассеяние света
2-й семестр
Лекція 19.
1. Электростатическое поле в вакууме
1.1 Дискретность электрического заряда. Закон сохранения электрического заряда
Источником электромагнитного поля служит электрический заряд – внутренняя характеристика элементарной частицы, определяющая ее способность вступать в электромагнитные взаимодействия. Различают два вида электрических зарядов – положительный и отрицательный. Электрический заряд дискретен – заряд любого тела составляет целое кратное от элементарного электрического заряда e=1,610-19 Кл. По знаку заряда все элементарные частицы можно разделить на два класса: отрицательно заряженные (например, электрон) и положительно заряженные (протон, позитрон и др.). Один из фундаментальных строгих законов природы – закон сохранения электрического заряда: алгебраическая сумма электрических зарядов любой замкнутой (электрически изолированной) системы остается постоянной, какие бы процессы ни происходили внутри этой системы.
1.2 Закон Кулона. Напряженность электрического поля
Взаимодействие между неподвижными электрическими зарядами осуществляется посредством электрического поля. Представление об электрическом поле было введено в 30-х годах XIX в. английским физиком М. Фарадеем. Согласно Фарадею каждый покоящийся заряд создает вокруг себя электрическое поле; поле одного заряда действует на другой заряд, и наоборот, – так осуществляется взаимодействие между зарядами.
Сила взаимодействия между двумя точечными неподвижными зарядами определяется законом Кулона: два точечных неподвижных заряда взаимодействуют друг с другом с силой, пропорциональной произведению зарядов и обратно пропорциональной квадрату расстояния между ними:
-
,
(1.1)
где
k
- постоянная, зависящая от выбора системы
единиц. Сила Кулона направлена по линии,
соединяющей заряды. По третьему закону
Ньютона кулоновские силы приложены к
разным зарядам и направлены либо
навстречу друг другу (если заряды
разноименные), либо в противоположные
стороны (если заряды одинакового знака).
В СИ постоянная
,
где 0
- электрическая постоянная СИ,
0=8,8510-12 Кл2/(Нм2).
Таким образом, для зарядов, расположенных в вакууме, закон Кулона имеет вид
-
.
(1.2)
Электрический заряд в СИ измеряется в кулонах. Один кулон - это такой заряд, который протекает через поперечное сечение проводника за 1с при неизменной силе тока, равной 1А.
Силовой
характеристикой электрического поля
является напряженность
–
векторная величина, модуль которой
равен силе, действующей со стороны
электростатического поля на единичный
заряд; а направление совпадает с
направлением силы, действующей на
положительный заряд
-
(1.3)
Поскольку сила, действующая на заряд, помещенный в среду с диэлектрической проницаемостью , уменьшается в раз, то при переходе из вакуума в среду напряженность поля также уменьшается в раз:
-
,
(1.4)
где Ес – напряженность электростатического поля в среде.
Если электростатическое поле создается несколькими зарядами, то в соответствии с принципом суперпозиции суммарная напряженность поля в некоторой точке определяется как векторная сумма напряженностей, создаваемых в этой точке отдельными зарядами:
-
(1.5)