- •Руда, родовище, рудопрояв, рудне поле, район, металогенічна провінція
- •Форми тіл корисних копалин
- •Мономінеральні і полі мінеральні руди, домішкові елементи, комплексні родовища
- •4. Структури і текстури руд
- •5. Методи вивчення корисних копалин
- •6. Генетична класифікація корисних копалин
- •7. Промислова класифікація корисних копалин.
- •8. Ендогенні родовища та умови їх утворення.
- •9. Магматогенні родовища, їх поділ
- •10. Пегматитові родовища їх генезис та мінеральний склад
- •11. Особливості карбонатитових родовищ, їх склад, генезис, приклади.
- •12. Скарнові родовища, умови їх утворення та склад, приклади.
- •13. Альбітит-грейзенові родовища, їх мінеральний склад та умови утворення
- •14. Гідротермальні родовища, їх поділ склад та умови утворення.
- •15. Екзогенні родовища, їх особливості та класифікація
- •16. Розсипні родовища, приклади
- •19. Метаморфогенні родовища та умови їх утворення
- •20.Хімічний та мінеральний склад земної кори. Кларки, поділ за вмістом.
- •21. Петрогенні хімічні елементи, кондиції руд, запаси, ресурси
- •22. Родовища нафти, газу та вугілля, приклади в світі та Україні
- •23.Класифікація металевих корисних копалин
- •25. Марганець: генетичні типи родовищ та найважливіші мінерали, його промислове використання, приклади родовищ Марганцю. (Нікопольське, залізомарганцеві конкреції на дні океанів та ін.)
- •26.Генетичні типи промислових родовищ хрому, приклади.
- •27. Родовища та головні промислові мінерали титану. Застосування і властивості титану
- •28. Генетичні типи промислових родовищ міді, мінерали, приклади.
- •29. Родовища, промислові мінерали свинцю і цинку, типи руд, провідні країни за запасами і видобутком свинцю і цинку, приклади
- •30. Боксити, провідні країни світу за запасами бокситів, генетичні типи промислових родовищ бокситів, приклади родовищ.
- •31.Мінерали Ni і Co. Використання Ni і Co у промисловості, генетичні типи промислових родовищ, характеристика родовищ (Нова Каледонія)
- •32.Промислове застосування вольфраму і його головні мінерали, генетичні типи промислових родовищ вольфраму. Приклади
- •33. Мінерали молібдену і його застосування, , генетичні типи промислових родовищ, характеристика родовищ.
- •34.Генетичні типи промислових родовищ олова, приклади.
- •35. Промислові мінерали сурми і ртуті, головні промислові родовища, приклади
- •36. Золото, його застосування, мінерали, генетичні типи родовищ, приклади, характеристика родовищ світу (Вітватерстранд, Мурунтау та ін), та уУкраїни
- •37 Мінерали срібла, його промислове застосування типи родовищ і приклади.
- •38 Основні вл використання платини і платиноїдів, х-ка родовищ типу рифу Меренського.
- •39. Рідкісні та розсіяні елементи (Li, Be, Cs, Rb, Zr, Hf, Ta, Nb, Ge, та ін) і їхнє практичне значення , генетичні типи і приклади родовищ.
- •40. Рідкісноземельні елементи, їх сучасне значення. Мінерали рідкісних земель. Генетичні типи промислових родовищ рідкісних земель, приклади.
19. Метаморфогенні родовища та умови їх утворення
Метаморфогенні родовища – родовища корисних копалин, що утворилися в процесі метаморфізму гірських порід в умовах високого тиску і т-р і знаходяться серед метаморфічних комплексів. Розділяються на дві групи:
метаморфізовані родовища
метаморфічні родовища.
Метаморфізовані родовища – виникають при радикальній зміні тіл корисної копалини, що раніше існували, внаслідок процесів регіонального і локального метаморфізму з втратою більшості ознак їх первинного генезису.
У процесі регіонального метаморфізму тіла сплющуються, розвиваються сланцеві і волокнисті текстури, ґранобластичні структури. Мінеральні модифікації малої густини замінюються мінералами з більшою густиною, водовмісні мінерали витісняються безводними. Аморфна речовина змінюється кристалічною. Найбільша кількість регіонально-метаморфізованих родовищ відома серед древніх допалеозойських формацій гірських порід. Типові представники – родовища зал. руд Криворізького залізорудного басейну, КМА, манґанових руд Бразилії та Індії, руд золота і урану Вітватерсранда в ПАР та ін.
Метаморфічні родовища — поклади корисних копалин, що виникають внаслідок метаморфізму гірських порід.Наприклад, при метаморфічному перетворенні вапняків виникають мармури, при метаморфізмі пісковиків формуються кварцити, при низькому рівні метаморфізму глинистих сланців можуть утворитися покрівельні сланці, а при високому — родовища андалузиту, кіаніту і силіманіту. Особливий тип ударного метаморфізму пов'язаний з падінням метеоритів, інших небесних тіл. Імпактити, які при цьому виникають, містять скупчення дрібних алмазів.
20.Хімічний та мінеральний склад земної кори. Кларки, поділ за вмістом.
Земна кора складена гірськими породами різного походження, що є природними мінеральними агрегатами. Мінерали ж, у свою чергу, складаються із хімічних елементів. Тому, щоб дістати уявлення про хімічний склад земної кори, вивчають хімічний склад порід і мінералів, відібраних на поверхні Землі, в гірничих виробках (шахтах, рудниках), в бурових свердловинах, на дні морів та океанів. При цьому найбільш достовірні відомості дістають лише для верхньої частини кори (до глибини 0...20 км). Для суджень про хімічний склад глибинних геосфер використовують дані аналізів метеоритів, зразків порід, привезених з Місяця радянськими станціями "Луна ", "Луна 20", "Луна 24" і американськими кораблями "Аполлон 1", "Аполлон 2".
В 1889 році американський геохімік Ф.Кларк опублікував перші дані про середній вміст хімічних елементів в земній корі. В 1923 році академік О.Є.Ферсман запропонував середній вміст хімічного елементу в земній корі розрахований на весь її об'єм і виражений у вагових або об'ємних відсотках, називати к л а р к о м, на честь американського дослідника (наприклад, кларк магнію, кларк титану). Значний вклад в розробку цього питання внесли: В.І.Вернадський (перший Президент Української∙ Академії∙ Наук), О.Є.Ферсман, О.М.Заварицький, О.П.Виноградов та ін. Так, за даними О.П.Виноградова (1962), найбільш поширеними елементами в земній корі є кисень, кремній і алюміній, на їх частку припадає 82,58% маси всієї земної кори. За цими елементами йдуть залізо, натрій, калій, магній і титан, які складають ще 5,16%. Частка всіх інших елементів в земній корі складає лише 2,26%
Як видно із наведеної таблиці, одержані Ф.Кларком ще в 1924 році, і радянськими геохіміками О.Б.Роновим і О.О.Ярошевським (з врахуванням хімічних аналізів місячних зразків і порід з глибоких зон океанів) мало відрізняються (до 3%).
Крім дев'яти основних хімічних елементів десятими частками відсотка обчислюється вміст у земній корі Ті (0,52), С (0,46), Мn (0,12), S (0,11), Cl (0,2). Всі інші елементи таблиці Менделєєва представлені в земній корі сотими, тисячними і мільйонними частками відсотка. Елементи, що складають мізерну частку земної кори, тобто зустрічаються в природі дуже рідко, називають р і д к і с н и м и або р о з с і я н и м и. Це не означає, що при певних умовах вони не можуть утворювати в земній корі досить значних скупчень, тобто родовищ.
Як уже відмічалось, про середній склад Землі в цілому судять в основному за аналізами метеоритів, використовуючи також геофізичні дані, зокрема про зміну щільності з глибиною. При цьому виходять з того, що метеорити, попадаючи на Землю з поясу астероїдів, або є уламками гіпотетичної планети Фаетон, яка з невідомих причин розпалася, або ж служать вихідним матеріалом для формування нової планети між орбітами Марса і Юпітера. У тому й іншому випадку допускається подібність хімічного складу планет земної групи, а отже, і можливість судити за складом метеоритів про хімічний склад внутрішніх геосфер Землі. Вперше середній хімічний склад Землі за вказаною методикою розраховував у 1930 році О.Є.Ферсман. У 1978 році американський геохімік Б.Мейсон з врахуванням аналізів зразків гірських порід, доставлених з Місяця, запропонував свій гіпотетичний склад Землі, дещо відмінний від приведеного О.Є.Ферсманом.
Порівняння даних про хімічний склад земної кори і Землі в цілому виявляє, в першу чергу, різке підвищення в другому випадку частки важких елементів заліза і нікелю, що на думку багатьох дослідників, може вказувати на залізо нікелевий склад ядра Землі.
Кларки елементів (рос. кларки элементов, англ. percent abundance of elements; нім. Clarke-Zahl f von Elementen pl) — система усереднених вмістів, що характеризують поширеність хімічних елементів у великій геохімічній системі (в земній корі, літосфері, атмосфері, гідросфері, біосфері, на Землі загалом або в космосі). У більш вузькому розумінні - числа, які вказують середній вміст хімічних елементів у даному космічному тілі. Термін «кларк елементу» запропонував Олександр Ферсман у 1923 році на честь відомого американського геохіміка Франка Кларка.
Виражається в масових, об'ємних, атомних відсотках (%), промілле (о/оо), мільйонних частках (г/т) або по відношенню до вмісту одного з елементів, найбільш поширеного, наприклад, кремнію. Узагальнення даних за хімічним складом гірських порід, що складають земну кору, з урахуванням їх поширення до глибини 16 км, уперше було зроблено американським вченим Ф.У.Кларком (1889).
Найбільш повне зведення кларків і оригінальні оцінки середнього вмісту елементів у різних типах гірських порід і земній корі належать Ферсману (1933), О.П.Виноградову (1949, 1956, 1962), З.Р.Тейлору (1964) та ін. У космосі різко переважають найпростіші елементи Н і Не (99,99%), в земній корі (99%) - О, Al, Fe, Ca, Mg, Na, К, Ti, Mn, Н, в гідросфері О і Н. У певній залежності від кларків знаходиться загальний вміст елементів в геохім. системах, загальні запаси тих або інших металів і руд в земній корі, масштаби родовищ, к-ть мінералів кожного елемента, поведінка елементів у геохімічних процесах.
Номер з/п Елемент Кларк, мас.%
1. О 49,5000
2. Si 25,8000
3. Al 7,5700
4. Fe 4,7000
5. Ca 3,3800
6. Na 2,6300
7. К 2,4100
8. Mg 1,9500
9. H 0,8800
10. Ti 0,4100
11. Cl 0,1900
12. Р 0,0900
13. С 0,0870
14. Mn 0,0850
15. S 0,0480
16. N 0,0300
17. Rb 0,0290
18. F 0,0280
19. Ba 0,0260
20. Zr 0,0210
21. Cr 0,0190
22. Ni 0,0150
23. Sr 0,0140
24. V 0,0140
25. Zn 0,0120
26. Cu 0,0100
27. W 0,0064
28. Li 0,0060
29. Ce 0,0043
30. Co 0,0037
31. Sn 0,0035
32. Y 0,0026
33. Nd 0,0022
34. Nb 0,0019
35. Pb 0,0018
Разом 99,98 мас.%
Інші елементи (сумарно) 0,02 мас.%
