Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л.р.№1-2.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
957.95 Кб
Скачать

Інтервальний варіаційний ряд частот

інтервали,

[ )

[ )

[ ]

частоти, fi

f1

f2

fm

Аналогічно визначається і будується інтервальний варіаційний ряд часток (або і. в. р. w) (таблиця 1.4)

Таблиця 1.4

Інтервальний варіаційний ряд часток

інтервали,

[ )

[ )

[ ]

частки, wi

w1

w2

wm

Групувати статистичну сукупність у і. в. р. зручно, коли число різних значень варіант zi або уі порівняно велике, що характерно для неперервної ознаки. Тому в статистиці прийнято зазвичай для неперервної ознаки будувати і. в. р. 

  1. Графічне зображення варіаційних рядів

Графічно можуть зображуватись д. в. р. та і. в. р. ; з. в. р. не має графічного зображення.

Графічне зображення д. в. р. f називається полігоном частот і являє собою сукупність точок з координатами 1; 0), (х1; f1), (х2, f2), …, (хт; fm), (хт;0), побудованих у прямокутній системі координат xof і послідовно сполучених відрізками прямих (рис. 1.1).

Рис. 1.1. Полігон частот для д. в. р. f.

Аналогічно визначається і будується полігон часток, який є графічним зображенням д. в. р. w.

Якщо д. в. р. w будується для дискретної ознаки, то полігон часток можна розглядати як статистичний аналог багатокутника розподілу генеральної сукупності, з якої вибрана статистична сукупність, що згрупована в даний д. в. р. w.

Графічне зображення і. в. р. f називається гістограмою частот і являє собою фігуру, що складається з прямокутників, кожний з яких будується у прямокутній системі координат xof для відповідної пари “інтервал‑частота” і. в. р. f. При цьому основа кожного і-го прямокутника будується на осі абсцис і є і-м інтервалом і. в. р. f, а висота дорівнює частоті fi (рис. 1.2).

Рис. 1.2. Гістограма та полігон частот для і. в. р. f.

Аналогічно визначається і будується гістограма часток, яка є графічним зображенням і. в. р. w.

Графічним зображенням і. в. р. f може бути також полігон частот, який являє собою сукупність точок з координатами , , …, , , побудованих у прямокутній системі координат xof і послідовно сполучених відрізками прямих (ламана лінія на рис. 1.2). При цьому – середина і-го інтервалу.

Аналогічно визначається і будується полігон часток для і. в. р. w, який може бути графічним зображенням останнього.

Якщо і. в. р. w будується для неперервної ознаки, то його гістограму і полігон часток можна розглядати як статистичний аналог кривої розподілу генеральної сукупності, з якої вибрана статистична сукупність, згрупована в даний і. в. р. w.

Секторні діаграми відображають структуру того чи іншого явища. При цьому дуги секторів пропорційні значенням відповідних часток. Секторні діаграми зображуються у вигляді кола, яке поділене на відповідні сектори. На полі сектора позначається частка у відсотках. Поле сектора заштриховується або зафарбовується різними кольорами. При побудові секторних діаграм існують певні правила: найбільший за величиною сектор має найсвітліший колір або зовсім лишається чистим (не заштрихованим), а найменший сектор має найщільнішу штриховку чи найтемніший колір. Поруч з колом повинні бути наведені клітинки з відповідними позначеннями, які розташовуються в певній логічній послідовності (в порядку зростання або зменшення ознаки).

Таблиця 1.5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]