
- •Минимальные требования к содержанию дисциплины (модуля, спецкурса):
- •2. Взаимосвязь дисциплины (модуля)/спецкурса с другими дисциплинами учебного плана специальности:
- •3. Перечень элементов учебно-методического комплекса:
- •4. Список авторов элементов умк:
- •5. Нормативные документы, требования которых учитывались при разработке умк:
- •050201.65 Математика (Информатика)
- •1. Цели и задачи дисциплины:
- •2. Требования к уровню освоения содержания дисциплины:
- •3. Объем дисциплины и виды учебной работы
- •3. Объем дисциплины и виды учебной работы
- •4. Содержание дисциплины
- •5. Учебно-методическое обеспечение дисциплины
- •6. Материально-техническое обеспечение дисциплины
- •7.1.Перечень примерных контрольных вопросов и заданий для самостоятельной работы
- •7.2 .Примерный перечень вопросов к зачету
- •8.Методические рекомендации по организации изучения дисциплины
- •9. Учебная практика по дисциплине
- •Конспект лекций теоретического курса
- •050201.65 Математика (Информатика)
- •Лекция № _1__
- •Лекция № _2__
- •Краткое содержание лекционного материала
- •1. Определение топологического многообразия
- •2. Двумерные замкнутые многообразия. Двумерные компактные многообразия с краем
- •Лекция № _3__
- •Краткое содержание лекционного материала
- •1. Вектор-функция скалярного аргумента
- •1. Понятие кривой. Параметризация кривой
- •2. Различные уравнения кривой
- •2. Естественная параметризация кривой. Длина дуги
- •Лекция № _4__.
- •Краткое содержание лекционного материала
- •1. Касательная к кривой. Нормальная плоскость
- •5. Соприкасающаяся плоскость кривой
- •6. Сопровождающий трехгранник кривой. Базис Френе
- •Лекция № _5_.
- •Краткое содержание лекционного материала
- •7. Кривизна кривой
- •8. Кручение кривой
- •9. Формулы Френе. Понятие о натуральных уравнениях кривой
- •Лекция № _6_.
- •Краткое содержание лекционного материала
- •Лекция № _7_
- •Краткое содержание лекционного материала
- •1. Первая квадратичная форма поверхности
- •2. Длина кривой на поверхности
- •3. Угол между кривыми на поверхности
- •4. Площадь поверхности
- •Лекция № _8_.
- •Краткое содержание лекционного материала
- •1. Вторая квадратичная форма поверхности
- •2. Нормальная кривизна поверхности
- •3. Главные направления. Линии кривизны поверхности
- •4. Главные кривизны.
- •5. Полная и средняя кривизны поверхности.
- •Практические
- •050201.65 Математика (Информатика)
- •Практическое занятие № _1_
- •План практического или семинарского занятия:
- •1. Вопросы, выносимые на обсуждение
- •2. Краткие теоретические материалы
- •3. Практические задачи, задания, упражнения.
- •Вопросы и задания студентам для самостоятельной работы.
- •Практическое занятие № _2_
- •План практического или семинарского занятия:
- •Практическое занятие № __3____
- •Практическое занятие № __4____
- •4. Вопросы и задания студентам для самостоятельной работы.
- •Практическое занятие № ___5____
- •План практического или семинарского занятия:
- •Практическое занятие № ___6___
- •План практического или семинарского занятия:
- •Практическое занятие № __7__
- •План практического или семинарского занятия:
- •Практическое занятие № __8___
- •План практического или семинарского занятия:
- •4. Вопросы и задания студентам для самостоятельной работы.
- •Практическое занятие № ___9___
- •План практического или семинарского занятия:
- •Практическое занятие № __10____
- •План практического или семинарского занятия:
- •Практическое занятие № ___11____
- •План практического или семинарского занятия:
- •050201.65 Математика (Информатика)
- •050201.65 Математика (Информатика)
- •050201.65 Математика (Информатика)
- •050201.65 Математика (Информатика)
- •050201.65 Математика (Информатика)
- •050201.65 Математика (Информатика)
- •050201.65 Математика (Информатика)
050201.65 Математика (Информатика)
код наименование
Барнаул
2011
Методические рекомендации преподавателю.
При изучении курса «Дифференциальная геометрия» должны быть активизированы остаточные знания студентов по таким математическим дисциплинам, как векторная алгебра, математический анализ, дифференциальные уравнения.
При чтении лекционного курса необходимо подчеркивать геометрическое содержание вводимых понятий и связей между ними, создавать ощутимые, понятные и запоминающиеся геометрические образы, аппелировать к основанной на повседневном опыте геометрической интуиции слушателей.
В процессе проведения практических занятий необходимо добиваться устойчивых навыков оперирования с понятиями и формулами дифференциальной геометрии, умения проверять на качественном уровне правильность проводимых выкладок. . В качестве раздаточного материала предлагается использовать макет рабочей программы.
При организации самостоятельной работы студентов следует указать им на наличие примеров решения задач в рекомендуемых учебниках и учебных пособиях.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Алтайская государственная педагогическая академия»
Кафедра
Геометрии и математических методов в экономике
Учебно-методический комплекс дисциплины
Геометрия II / 4 (Дифференциальная геометрия)
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ДИСЦИПЛИНЕ ДЛЯ СТУДЕНТОВ
Специальность
050201.65 Математика (Информатика)
код наименование
Барнаул
2011
Методические рекомендации студенту.
Студенты, завершившие изучение данной дисциплины, должны:
Знать:
основные понятия и методы дифференциальной геометрии;
базовую терминологию и математическую символику для выражения количественных и качественных отношений объектов дифференциальной геометрии;
основные теоремы теории кривых и теории поверхностей.
Иметь представление:
О внутренней геометрии поверхности;
о геодезической кривизне и геодезических линиях;
поверхностях постоянной кривизны
Рекомендуется просмотреть конспекты лекций по изученным дисциплинам и курсам.
Проработку лекционного материала можно проводить как после каждого занятия, так и по завершению темы. Это позволит связать воедино полученные сведения и составить цельную картину. Не следует стремиться к механическому запоминанию формулировок приведенных определений и положений, если требования прямо не указывают на это. Вполне эффективной может оказаться попытка понять суть явления, выработать свое отношение к нему, опираясь на материал, содержащийся в рекомендованной литературе. Сказанное особенно эффективно, когда речь идет о таких требованиях, «понимает» или «имеет представление». Напротив, если это касается требования «должен уметь, то рекомендуется поупражняться в соответствующем виде деятельности. Старайтесь быть активным участником занятия.