
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
Глава 21
МАЗИ (UNGUENTA)
Определение мазей как лекарственной формы, требования, предъявляемые к ним, классификацию и характеристику мазевых основ см. том 1.
21.1. Технология мазей
Производство мазей на крупных фармацевтических предприятиях осуществляется в соответствии с регламентом, разработанным на основе научных исследований, и сосредоточено в специальных цехах, оснащенных необходимым оборудованием. Технологический процесс находится под строгим контролем ОТК. на каждой стадии производства, так как любое отклонение от регламента может привести к снижению качества выпускаемой продукции и в конечном итоге к большим материальным потерям.
Технология мазей состоит из следующих основных стадий: подготовка основы для мазей и лекарственных веществ, введение лекарственных веществ в основу, гомогенизация мазей, стандартизация, ф_асовка_ и хранение мазей.
Подготовка основы для мазей и лекарственных веществ. Основу для мазей расплавляют с помощью паровой иглы или змеевика в таре (бочке, баках) и перемещают в варочный котел. Существуют также специальные устройства для расплавления и транс-
503
— емкость с мазевой основой;
— воронка с фильтром и ко жухом; 3 — нагревательные элементы; 4— шланг для пере дачи мази в емкость; 5 — !к !-■■■! ник переменного тока.
портировки основы с помощью вакуума (рис. 21.1). Это воронка с фильтром и кожухом, снабженная нагревательными элементами, получающая питание от сети переменного тока. Воронка помещается в емкость с основой и нагреваясь, плавит ее. Если в основу входят несколько компонентов, плавление начинают с тугоплавких веществ. При необходимости для удаления механических включений основу фильтруют через холст или марлю. Далее основу по обогреваемому трубопроводу переводят в варочный котел или смеситель. При получении эмульсионных основ ПАВ вводят в ту же фазу, в которой они больше растворимы. Эмульгирование проводят в реакторах с мешалками или барботированием фильтрованного воздуха.
Лекарственное вещество измельчают, просеивают через сито с определенным диаметром отверстий, растворяют в воде или подходящем компоненте мазевой основы.
Введение лекарственных веществ в основу. Добавление твердых лекарственных веществ или их растворов к основе осуществляется при постоянном перемешивании в 2-вальцовых смесителях, в реакторах с паровой рубашкой или электрическим обогревом, снабженных мощными лопастными мешалками: якорной, планетарной или рамной, которые позволяют перемешивать мази во всем объеме при различных темпера-
Рис* 21.2. Устройство реактора-смесителя.
1 — корпус; 2 — крышка; 3, 4, 5 — мешалки (якорная, лопастная, турбинная); 6— паровая рубашка корпуса.
мельница.
Рис. 21.3. Жерновая Mej
S04
Гомогенизация мази. Стадия гомогенизации является специфической для производства мазей в больших количествах, так как при перемешивании не всегда удается получить необходимую степень дисперсности лекарственных веществ. Для гомогенизации в производстве используют жерновые мельницы, валковые мазетерки.
Жерновая мельница имеет два жернова (рис. 21.3), верхний отлит вместе с загрузочной воронкой, неподвижен, нижний вращается в горизонтальном направлении. На поверхности жерновов имеются бороздки, более глубокие в центре, у краев исчезающие. Мазь гомогенизируется в просвете между жерновами и выдавливается к краям, где с помощью скребка собирается в приемник. Степень дисперсности частиц в мази определяется расстоянием между жерновам-и. Производительность мельницы 60—80 кг/ч.
Валковые мазетерки имеют два или три валка с гладкой поверхностью, вращающиеся навстречу друг другу с разной скоростью, (рис. 21.4), что обеспечивает переход мази с вала на вал и увеличивает трение между ними.
В настоящее время для гомогенизации мазей, особенно эмульсионньгх,^с}&£пензионных и комбинированных, применяется jPnAj(рис. 21.5), успешно используемый на целом ряде промышленных предприятий: Ленинградской и Московской фармацевтических фабриках, Борисовском химико-фармацевтическом заводе для производства ихтиоловой, скипидарной, цинковой, борной и других мазей. При приготовлении мазей из серы, цинка оксида и других аморфных веществ с использованием РПА, стадии предварительного измель- чения лекарственных веТдеств можно опустить, что дает значительный экономический эффект.
Перспективным для лечения гнойных ран, хирур-
506
Рис. 21.4. Принцип работы трехвальцовоп мазетерки. I — валки; 2 — бункер; 3 — направляющий желоб.
Рис. 21.5. Устройство РПА с внешней циркуляцией в замкнутом цикле. I — мазевой котел; 2 — паровая рубашка; 3 — двигатель; 4 — РПА.
гических инфекций, аутодермопластики является производство мазевых повязок, широко выпускаемых зарубежными фирмами. Мази, приготовленные на вазелине, наносят на хлопчатобумажную или вискозную ткань и накладывают на раневые поверхности. Мазевая повязка обеспечивает отток экссудата, гигиенична, способствует быстрому заживлению ран.
Стандартизация мазей. Мази стандартизуют ,до содержанию)лекарственных веществ, зцштеннюмрН их ДоДЙвтх-т5астворов""~(извлечений) и ртепенй"~ддгс?гер.с-
egmx частиц ,в суспензионных мазях': --
днородность1"" мазей определяется визуально по методике, включенной в ГФ XI. В связи с возросшими
507
требованиями
к качеству препаратов более прогрессивным
является метод исследования мазей,
разработанный
профессором И. А. Муравьевым с сотрудниками.
Нормы степени дисперсности твердых
частиц являются
индивидуальными для каждой мази,
например,
по фармакопее ГДР не более 60 мкм, в
глазных мазях
— не более 10 мкм. Предлагается оценивать
также
кристалличность лекарственных веществ
с помощью
оптического микроскопа.
Значительное влияние на терапевтическую ценность мази и ее стойкость при хранении оказывают структурно-механические свойства, характеризующие консистенцию, которая в настоящее время не измеряется, отсюда возможен выпуск нестандартной продукции. В связи с этим проводятся исследования по разработке методов определения растекаемости мази, коллоидной стабильности и др.
Фасовка и хранение мазей. Л^ази фасуют в стеклянные банки, полиэтиленовые и алюминиевые тубы. Металлические тубы изнутри покрывают лаком для консервной тары, снаружи — эмалевой краской. Упаковку в тубы осуществляют с помощью тубонабивоч-ных полуавтоматов.
Хранят мази в прохладном, защищенном от света месте.
Номенклатура мазей разнообразна. Примерами мазей, выпускаемых фармацевтическими предприятиями, могут быть следующие.
Мазь ртутная белая (Unguentum Hydrar-gyri album). Состав: ртути амидохлорида мельчайшего порошка 10,0 г, вазелина 60,0 г, ланолина 30,0 г.
Мазь с йодидом калия (Unguentum Kalii jodidi). Состав: калия йодида 50,0 г, натрия тиосульфата 1,0 г, воды дистиллированной 44,0 г, ланолина безводного 135,0 г, эмульсионной основы 270,0 г (вазелина 162,0 г, эмульгатора Т-2 или № 1 27,0 г, воды 81,0 г).
а м и к а з о л о в а я 5 % (Unguentum
Паста салицилов о-ц и if к о в а я (Pasta Zinci salicylatum). Состав: кислоты салициловой мельчайшего порошка 2,0 г, цинка оксида 25,0 г, вазелина желтого 48,0 г.
Мазь
Amycazoli 5%). Состав: амиказола 5,0 г, моноэтилового эфира этиленгликоля 4,5 г, ланолина без-
508
водного 10,0 г, эмульгатора Т-2 20,0 г, спирта коричного 0,15 г, натрия тетрабората 1,5 г, воды 48,85 г. Мазь «Ундецин» (Unguentum «Undecinum»). Состав: кислоты ундециленовой 8,0 г, меди унде-циленовокислой 8,0 г, парахлорфенилового эфира глицерина 4,0 г, эмульгатора № 1 7,0 г, этилцеллюло-зы 4,0 г, воды дистиллированной до 100,0 г.
Контрольные вопросы
Какова технология мазей?
В чем заключается гомогенизация мазей и в каких случаях она является обязательной?
По каким показателям стандартизуют мази?
Какое оборудование используется в производстве мазей?
В чем преимущества РПА перед другими машинами в про изводстве суспензионных мазей?
Приведите примеры мазей промышленного производства. Каковы особенности их технологии?