
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
Глава 19
ФЕРМЕНТЫ
МИКРОБИОЛОГИЧЕСКОГО СИНТЕЗА. ИММОБИЛИЗОВАННЫЕ ФЕРМЕНТЫ
19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
Получение ферментов из культур микроорганизмов является перспективным ввиду неограниченной доступности исходного сырья — бактерий, грибов и актиномицетов. Большие возможности открываются при отборе и искусственном мутагенезе продуцентов для направленного биосинтеза определенных ферментов. Биосинтетические методы отличаются высокой производительностью за счет способности микроорганизмов к интенсивному размножению. Известны бак-
476
терии, которые делятся каждые 30—60 мин, в результате чего происходит быстрое накопление целевых продуктов в биомассе или культуральной среде. Поэтому, несмотря на ряд лимитирующих факторов, методы биотехнологии являются экономически более эффективными, чем методы получения биологически активных веществ из дорогого и дефицитного животного сырья.
^Биотехнологический процесс включает большую подготовительную работу: очистку и стерилизацию воздуха, посуды и аппаратов; подготовку питательной среды для биосинтеза и ее стерилизацию; выращивание посевного материала исходной культуры. Засев производственной питательной среды и выращивание микроорганизмов (продуцентов ферментов) проводят в ферментаторе. Культивирование микроорганизмов осуществляют в основном глубинным способом в жидкой питательной среде при строго определенном значении рН, времени и температуры, подавая стерильный воздух.
Большинство ферментов промышленного производства относится к внеклеточным, поэтому накапливаются в культуральной жидкости, что значительно упрощает их выделение (схема 19.1). Культуральную жидкость отделяют от частиц мицелия фильтрованием через синтетические ткани, применяемые в пищевой промышленности и обладающие механической и химической прочностью. С целью улучшения процесса фильтрации используют дополнительный фильтрующий слой из материалов, имеющих высокие гидродинамические свойства — перлит, уголь активированный и др. Для повышения качества фильтрата по цветности и прозрачности применяют соосажде-ние мелкодисперсных взвешенных частиц мицелия и высаливание балластных веществ аммония сульфатом. Осветление растворов проводят микрофильтрацией через мембраны с диаметром пор от 0,45 до 0.8 мкм. Снижение микробной контаминации осуществляют стерильной фильтрацией через мембраны с диаметром пор от 0,1 до 0,3 мкм.
При выделении изоферментов (внутриклеточных) основной задачей является сбор клеток, содержащих фермент, с последующей их промывкой буферным раствором. Наилучшие результаты отделения клеток обеспечивает микрофильтрация через мембранные
477
-СХЕМА
19.1. Технология ферментов, получаемых
биотехнологическими
методами
Нультивирование
микроорганизма— продуцента фермента
Отделение
биомассы (центрифугирование, сепарирование,
фильтрование)
\ |
|
\ |
||
Разрушение клеток микроорганизмов (дезинтеграция, ферментативный или химический лизис) |
|
Нонцентрирование (ультрафильтрация, ионнообменная хроматография и т.д.) |
||
|
\ |
|
|
|
Экстракция белков |
|
|||
■ |
|
|
||
Отделение экстракта от разрушенных клеток продуцента (центрифугирование, сепарирование, мембранная фильтрация) |
|
|||
|
|
|
||
|
|
Очистка целевого продукта с помощью различных методов |
||
|
|
|
(в том числе хроматогра-фических) |
Приготовление лекарственных форм
t—внутриклеточные ферменты 2~в«ендеточные ферменты
фильтры с диаметром пор 0,45 мкм. Осуществляют ее в тангенциальном потоке, при котором фильтруемая жидкость подается под небольшим углом к поверхности мембраны, чтц позволяет постоянно смывать слой частиц, образующихся на ее поверхности. Его удаление происходит также за.счет высокой ско-
478
- - рости подачи исходного раствора в фильтрующую -систему. Таким путем удается переработать большие 'объемы растворов и получить высококоицентрированные суспензии.
Следующей стадией выделения внутриклеточных ферментов (например, аспарагиназы, пенициллиназы) является разрушение клеток путем механической, гидродинамической или ультразвуковой дезинтеграции или лизиса с помощью ферментов и другими способами. Очищают растворы микрофильтрацией через мембранные фильтры с размером пор 0,22 мкм. Так как целевым компонентом является фильтрат, то наряду с фильтрацией в тангенциальном потоке используют и обычную — через патронные фильтры. Из растворов ферменты выделяют фракционированием нейтральными солями и растворителями, а также изо-электрическим осаждением.
Одним из прогрессивных методов очистки является ультрафильтрация, позволяющая проводить разделение в соответствии с размером молекул или молекулярной массой веществ. Основной характеристикой .. ультрафильтрационной мембраны является * средний предел полного деления частиц глобулярного белка, которые не проходят через мембрану. Наличие широкого набора мембран с пределами отсечения от 1 тыс. до i млн дальтон (обычно 1, 10, 30 тыс. и 1 млн) позволяет отделять различные примеси, очищать, концентрировать и обессоливать целевой продукт. Ультрафильтрация осуществляется в тангенциальном ■*.. ийтоке, обессоливание или удаление иизкомолекуляр-ных примесей (м.м. ниже предела деления мембраны) — в режиме диафильтрацин, т. е. при постоянном объеме фильтруемой жидкости, за счет восполнения фильтрата равным объемом воды или буферного раствора.
Важную роль в технологии выделения и очистки ферментов играют хроматографические методы. Они включают гель-фильтрацию или эксклюзионную хроматографию, когда время выхода вещества из хро-матографической колонки зависит от размера его молекул или молекулярной массы (более крупные молекулы не входят в поры сорбента и элюируются рань-ше); .ионообменную хроматографию, разделение при которой основано на различиях в суммарных зарядах Рисутствующих веществ при данном значении рН
479
(вещества, имеющие большой заряд, удерживаются сильнее и элюируются позже); обращенно-фазовую или гидрофобную хроматографию, при которой гидрофобные вещества сильнее связываются с поверхностью сорбента и элюируются позже. При очистке ферментов используют один или несколько из указанных методов хроматографического разделения.
Перспективной для выделения и очистки ферментов является аффинная хроматография, разделение с помощью которой основано на том, что один из компонентов смеси обладает повышенной способностью к связыванию с лигандом, присоединенным ковалент-ной связью к инертному носителю. При пропускании смеси белков или культуральной жидкости через колонку, заполненную таким сорбентом, молекулы соединения, обладающие сродством к лиганду, удерживаются в колонке, в то время как другие выходят из нее. Вещество из колонки селективно элюируют с помощью буфера, содержащего лиганд или его аналог, иногда с добавлением какого-либо растворителя.
Препараты ферментов микробиологического синтеза. Террилитин (Terrilytinum) —препарат содержит очищенный протеолитический фермент, получаемый из культуры плесневого гриба Aspergillus terri-cola. Он первый лекарственный микробный фермент, освоенный в 1976 г. отечественной промышленностью по разработкам Всесоюзного научно-исследовательского технологического института антибиотиков и ферментов медицинского назначения (ВНИТИАФ). Подобно большинству белковых препаратов микробного происхождения является комплексным препаратом, представленным тремя протеазами, из которых основное содержание, около 90%, составляет протеаза-1. Молекулярная масса террилитина 26 800, область стабильности при значении рН 4,0—9,0.
Террилитин представляет собой лиофилизирован-ный порошок или пористую массу белого цвета, легко растворим в воде, значение рН 1 % водного раствора 4,8—6,5; активность, выраженная в протеоли-тических единицах (ПЕ), должна быть не менее 2 в 1 мг. Препарат выпускают в герметически укупоренных флаконах по 200 ПЕ, хранят по списку Б, в сухом, защищенном от света месте, при температуре не выше 4 °С. Применяют наружно и в виде ингаляций для расщепления гнойных экссудатов, некротических тка-480
1Р*ней, при лечении гнойных ран, ожогов, заболеваний верхних дыхательных путей.
О раз a (Orazum) —содержит комплекс амило-литических (амилазы, мальтазы) и протеолитических ферментов, получаемых из культуры гриба Aspergillus oryzae. Препарат представляет собой аморфный порошок от светло-желтого до темно-желтого цвета, растворимый в воде, устойчив в интервале значений рН 2,5—9,0. Для медицинских целей его получают из технического продукта амилоризина-ПХ, высушенной и измельченной поверхностной культуры плесневого гриба Aspergillus oryzae, извлеченной водной экстракцией с последующей фракционной очисткой органическими растворителями. Выпускают препарат в форме гранул по 100 г в стеклянных банках. Хранят в сухом, прохладном месте. Применяют при расстройствах пищеварения, протекающих с угнетением функции пищеварительных желез.
Солизим (Solizymum) —ферментный препарат липолитического действия, полученный из культуры гриба Penicillium solitum. Он представляет собой гигроскопический порошок светло-коричневого цвета со •слабым специфическим запахом, мало растворимый в воде и практически нерастворимый в этаноле, хлороформе, эфире. Область стабильности при значении рН 6,5—9,5. Активность препарата определяют по способности гидролизовать эмульсию масла оливкового и выражают в ЛЕ (липолитических единицах). Солизим выпускают в таблетках с содержанием 20000 ЛЕ. Таблетки получают гранулированием со-лизима и сахара 5% раствором ПВП в хлороформе в установке с псевдоожижением вещества, сушат при температуре не выше 40 °С, покрывают оболочкой из ацетилфталилцеллюлозы в спирто-ацетоновом растворе с добавлением красящих веществ. Благодаря оболочке таблетки выделяют фермент лишь в верхних отделах кишечника. Хранят в сухом, защищенном от света месте, при температуре не выше 4 °С. Применяют при хронических заболеваниях желудочно-кишечного тракта и панкреатитах.
Стрептолиаза (Streptoliasum) —препарат, содержащий фермент стрептокиназу, получаемый из культуры р-гемолитического стрептококка группы С. иофиллизированный препарат представляет собой пористую массу белого цвета, легко растворимую в
481
воде. Активность стрептолиазы выражают в ЕД, За ЕД принимают количество, лизирующее в определенных условиях сгусток фибрина, образованный смесью растворов фибриногена и тромбина. Выпускают в ампулах по 250 000 и 500 000 ЕД. Хранят при температуре от 4 до 10 °С. Применяют в качестве фибрино-литического (тромболитического) средства. Недостатком является малая стабильность в организме: период полураспада стрептокиназы составляет 20—80 мин, ввиду чего препарат вводят внутривенно (в необходимых случаях — внутриартериально) капельно на протяжении 16—18 ч. Высокая иммунная активность является причиной побочных эффектов (озноб, лихорадка, аллергические реакции). Препарат стрептокиназы, лишенный указанных недостатков, получен ее иммобилизацией на водорастворимой полисахаридной матрице (см. стрептодеказу).
Аспарагиназа (Asparaginasum) — L-acna-рагиназа (L-аспарагин-амииогидролаза) — фермент, расщепляющий аспарагин на кислоту аспарагиновую и аммиак. Продуцируется разными штаммами кишечной палочки (Escherichia coli). Технология парентерального препарата L-аспарагиназы из Е.coli разработана совместными исследованиями Института органического синтеза (ИОС) АН Латвийской ССР и ВНИИ антибиотиков. Он представляет собой белый аморфный порошок, легко растворимый в воде и изотоническом растворе натрия хлорида. В качестве стабилизатора содержит глицин. Активность выражается в международных единицах действия (ME). За ME принято количество фермента, освобождающее 1 мкмоль аммиака из аспарагина за 1 мин. Препарат выпускают в •лиофилизированном виде' во флаконах, содержащих по 3000 и 10 000 ME L-аспарагиназы для инъекций. Хранят по списку Б, при температуре не выше 10 °С. Применяют при лечении острой лимфо-бластической лейкемии. Действие основано на том, что некоторые опухоли и лейкемические клетки не синтезируют аспарагин и поэтому нуждаются в его поступлении извне, например с пищей. Введение L-аспарагиназы позволяет искусственно ограничить поступление в опухоли указанной аминокислоты и подавляет их рост.
П е н и ц и л л и н а з a (Penicillinasum) — фермент, продуцируемый Bacillus lecheniformis штамм 482
749/с. Представляет собой белый аморфный гигроскопический порошок, легко растворимый в воде. Активность препарата выражается в ЕД. За ЕД принимают его наименьшее количество, способное инактивировать 10~7 моля (около 60 ЕД) бензил-пенициллина в 1 мл фосфатного буфера в течение 1 ч при температуре 37 °С. Препарат выпускают в герметически укупоренных флаконах или ампулах по 500 000 и 1 000 000 ЕД. Хранят при комнатной температуре. Применяют при острых аллергических реакциях и анафилактическом шоке, вызванных препаратами группы пенициллина.