
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
3.2.4. Энергетический баланс
Помимо материального баланса по сырью, в производстве составляется также энергетический баланс, представляющий соотношение количеств энергии, введенной в технологический процесс и выделенной по его окончании. Например, энергетический тепловой баланс представлен следующим уравнением
Q + Qi + Qi= <Эз + Qt,
где Q — тепло, введенное в технологический процесс с исходным веществом, Дж; Qi — тепло, подводимое извне, Дж; Q2 — тепловой эффект, полученный за счет экзотермических или эндотермических реакций. Он может иметь знак «-f-» или «—», Дж; Qs — тепло, уходящее с готовым продуктом, Дж; Qi — потери тепла, Дж.
3.3. ОБЩИЕ ПОНЯТИЯ
О МАШИНАХ И АППАРАТАХ
Промышленное производство препаратов характеризуется использованием машин и аппаратов, предназначенных для осуществления различных процессов.
3.3.1. Машины
Машина — это устройство, выполняющее механическое движение с целью преобразования энергии или материалов. В машине сочетаются три основных узла: двигатель, передаточный и исполнительный механизмы. Последние часто объединяются в одно целое, составляя рабочую машину (станок).
Двигатель — это устройство, обеспечивающее движение всех других механизмов машины. Иногда один и тот же двигатель обслуживает группу рабочих машин. Наиболее часто в качестве двигателя используются электромоторы трехфазного тока.
38
Рис. 3.2. Шестереночная передача.
Исполнительный, или рабочий, механизм является основой рабочей машины. Он служит для непосредственного воздействия на предмет труда и производит в нем необходимые изменения, являющиеся целью обработки.
Передаточный механизм — это связующее звено между двигателем и исполнительным механизмом, которое осуществляет свою функцию путем передачи, регулирования, преобразования и распределения первоначального вращательного движения, создаваемого двигателем, и приведения этого движения в работу в соответствии с задачами исполнительного механизма. Передаточные механизмы различных машин имеют между собой много общего и являются сочетанием различных элементарных узлов, позволяющих изменять скорость движения, его направление или преобразовывать одну форму механического движения в другую.
Для приема и передачи вращательного движения
39
1 2
Рис.
3.3.
Коническая передача.
3 5 4
Рис. 3.4. Червячная передача.
с вала двигателя на вал рабочей машины служат шкивы и приводные ремни, образующие тягу или привод, а также зубчатые, червячные и другие передачи. Шкив — это колесо с гладкой поверхностью обода, надетое на главный вал машины и прочно с ним скрепленное. Шкивы двигателя и рабочей машины соединяются друг с другом с помощью ремня. Шкив двигателя, начинающий движение, называется ведущим, шкив рабочей машины, воспринимающий движение, — ведомым. Для сохранения одинаковой скорости вращения ведущего и ведомого валов используют
40
Рис. 3.5. Шатунно-кривошипный механизм. Объяснение в тексте.
шкивы равных диаметров. При наличии шкивов с разными диаметрами скорость движения изменяется обратно пропорционально их диаметру.
Зубчатая передача представляет собой пару цилиндрических зубчатых колес или шестеренок, с помощью которых осуществляется передача вращательного движения с одного вала на другой и изменяется его направление (рис. 3.1) При использовании шестереночной передачи, состоящей из 3 шестеренок, направление движения можно сохранить (рис. 3.2)
Для передачи вращательного движения ведущего вала на вал, расположенный перпендикулярно или под углом к нему, применяют коническую передачу (рис. 3.3). Для передачи вращения между перекрещивающимися валами применяют червячную передачу. В этом случае на ведущем валу монтируется червяк, а на ведомом — червячное колесо. Угол между осями
41
Рис. 3.6. Эксцентриковый механизм. Объяснение в тексте.
червяка и червячного колеса обычно равен 90° (рис. 3.4).
К передаточным механизмам, преобразующим вращательное движение тела в возвратно-поступательное, относятся шатунно-рычажные механизмы: шатунно-кривошипный, эксцентриковый, кулачковый.
Шатунно - кривошипный механизм (рис. 3.5) имеет поступательную пару (1), представляющую собой сочетание направляющего тела и ползуна призматической формы (2), кривошип (3), муфта которого соединяется с шарниром ползуна (4), и шатун-прямолинейный рычаг (5). При вращении ведущего вала кривошип (цилиндрическое тело, расположенное на торце шкива) описывает окружность вокруг его оси, а вслед за ним ползун совершает возвратно-
42
Рис. 3. 7. Сложный эксцентриковый механизм. Объяснение в тексте.
поступательное движение. Амплитуда его равна диаметру окружности, которую описывает ось кривошипа.
Эксцентриковый механизм (рис. 3.6) представляет собой эксцентрик (1), соединенный с помощью эксцентрической тяги (2) с шарниром ползуна. Эксцентрик — круглый диск, насаженный на вал неподвижно и эксцентрично, т. е. центр диска не совпадает с центром оси вала. Вращаясь вместе с валом, эксцентрик описывает окружность вокруг его оси. Радиус этой окружности (расстояние от оси вращения вала до геометрического центра эксцентрика) называется эксцентриситетом. При вращении эксцентрика ползун (3) совершает возвратно-поступательное движение, амплитуда которого равна удвоенному эксцентриситету эксцентрика.
С целью возможного изменения эксцентриситета (а следовательно, и давления прессования) в таблеточных машинах ударного типа устанавливают сложный эксцентриковый механизм. Он состоит из основного эксцентрика (1), рабочего вала машины (2), на который насажен дополнительный эксцентрик (3).
43
Рис. 3.8. Пазовый кулачковый меха-
Последний дает возможность изменять глубину опускания верхнего пуансона (рис. 3.7).
Кулачковые механизмы характеризуются наличием кулака (толкающего тела), который совершает вращательное движение и своей поверхностью толкает другое тело, скользящее по его поверхности. Примером может служить пазовый кулачковый механизм, обеспечивающий возвратно-поступательное движение нижнего пуансона в эксцентриковой таблеточной машине (рис. 3.8).
Пазовый кулачковый механизм представляет собой плоское колесо, расположенное на торцовой части вала. На поверхности колеса вырезан паз, очерчивающий поверхность кулака. В паз помещается каток, связанный посредством рычага с тягой нижнего пуансона.