
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
Глава 14
ЭКСТРАКЦИОННЫЕ ПРЕПАРАТЫ ИЗ ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ. НАСТОЙКИ (TINCTURAE). ЭКСТРАКТЫ (EXTRACTA)
К экстракционным лекарственным средствам растительного происхождения, производство которых сосредоточено на крупных фармацевтических предприятиях, относятся настойки, экстракты, максимально очищенные препараты и препараты индивидуальных веществ. Основной стадией их получения является экстрагирование лекарственного растительного сырья.
14.1. Теоретические основы экстрагирования
Процесс экстрагирования относится к мясспп^еи-ным и определяется основными законами массопере-дачи: молекулярной диффузией,...массоотдачей, массо-проводдшосхыо.
' При ^экстрагировании процесс массопередачи происходит в системах твердое тело — жидкость или жидкость — жидкость. В фармацевтической промышленности наиболее широко распространена экстракция в системе твердое тело — жидкость. Экстракция в системе жидкость — жидкость применяется при очистке получаемых вытяжек из лекарственного сырья или для выделения индивидуальных веществ.
Экстрагирование твердых материалов представляет собой, процесс разделения- т-вердого тела на растворимую и нерастворимую части. В отличие от процесса растворения, когда переход вещества в раствор происходит полнсклъю, при экстрагировании он осущест-вляется~^ТсГст"ичнБ7~о^^»з^Я""7ГВ^~ф?зы: раствор веществ в сырье и раствор экстрактивных веществ в экстра-генте, омывающем сырье. Переход веществ из одной фазы в другую осуществляется до тех пор, пока они имеют разную концентрацию, являющуюся движущей силой процесса экстрагирования. Предельным состоянием массообмена является достижение равновесия системы, выравнивание скорости перехода веществ из
352
dU
одной фазы в другую и обратно приданных условиях. Скорость массопередачи (кг/м"• с) пропорциональна движущей силе процесса
•= КА,
где М — количество веществ, подвергающегося массо-передаче, кг; F — площадь фазового контакта, м2
т время процесса, с; Л — движущая сила массооб-
менного процесса, кг/м3; К — коэффициент массопередачи.
Перенос веществ в экстрагент осуществляется молекулярной и конвективной диффузией.
. Молекулярная диффузия обусловлена хаотическим, беспорядочным движением молекул, граничащих друг с другом и находящихся в макроскопическом покое. Математическое выражение молекулярной диффузии, определяющей скорость процесса, представлено уравнением первого закона Фика:
L
dx
dx
dM
где — скорость диффузии, кг/м; dc — разность
концентраций на границе раздела фаз, кг/м3; dx — изменение толщины диффузионного слоя, м2; D — коэффициент., .молекулярной диффузии — показывает количество вещества (кг), которое диффундирует в единицу времени (с), через единицу площади (м2), при разности концентраций, равной единице (кг/м ) и толщине слоя— 1 м; знак (—) —означает направление процесса в сторону уменьшения концентрации (из клетки).
Скорость молекулярной диффузии зависит от температуры, радиуса диффундирующих молекул вещества, вязкости среды.
Конвективная диффузия — это перенос вещества в виде небольших объемов раствора. Математическое выражение скорости диффузии представлено уравнением: \
\ dM _ aF dc
\ dT~ ^~dx~-
где р—коэффициент конвективной диффузии. Он показывает, какое количество вещества передается через
12-942 353
i
14.1.
Поднятие жидкости в капилляре
Конвективная диффузия может быть естественной и принудительной. Естественная (свободная) происходит за счет разности Плотностей экстрагента и раствора, изменения температуры, гидростатического столба жидкости. Принудительная возникает при перемешивании мешалками, насосами, вибрацией. Коэффициент конвективной диффузии определяется опытным путем и зависит от гидродинамических условий проведения процесса, а ее скорость в 1012 раз выше молекулярной. Конвективная диффузия представляет больший практический интерес, так как способствует интенсификации процесса массообмена.
14.1.1. Экстрагирование растительного сырья
Экстрагирование растительного материала имеет много особенностей, связанных с его клеточной структурой и физико-механическими свойствами. Биологически активные вещества заключены в клетку, экстра-гент должен проникнуть в нее, преодолев клеточный барьер. Процесс экстрагирования различен для свежего и высушенного сырья. В свежем сырье действующие вещества находятся в растворе внутри клетки, в высушенном — в виде сухих конгломератов в полости клетки (адсорбированы на ее стенках) или порах). Этим обусловлен разный подход к экстрагированию материала: из свежего сырья он сводится к вымыванию клеточного сока из разрушенных клеток и открытых пор. Перенос действующих веществ из неразрушенных клеток в экстрагент не происходит, что объясняется сложностью их строения. Растительная клетка представляет собой живой протопласт, заключенный в клеточную оболочку. Протопласт окружен плазмолеммой и тонопластом, обладающими избирательной проницаемостью. Кроме этих мембран, в клетке имеется много других, окружающих многочисленные вакуоли. Живая клетка находится в состоянии тургора, пристенный слой которой плотно прижат к оболочке. Через клеточные мембраны чистый экстрагент проникает внутрь клетки, они же препятствуют переходу из нее раствора с высокомолекулярными веществами Объем клеточного сока увеличивается и
354
Ряс.
в
нутри
клетки возникает гидростатическое
давление. Когда
оно становится равным осмотическому,
проникновение
экстрагента в клетку прекращается.
При высушивании растительного материала клетка меняет свойства — она переходит в состояние плазмолиза. Клеточные мембраны теряют полупроницаемость и приобретают свойства пористой перегородки, в которой насчитывается до 20 000 и более, riop диаметром от 0,2—0,3 мм до десятков и сотен нанометров, а процесс экстрагирования сырья — характер диализа через нее.
Процесс экстрагирования высушенного растительного сырья является многостадийным и начинается с проникновения экстрагента в материал, смачивания веществ, находящихся внутри клетки, растворения и десорбции их, вымывания клеточного содержимого из разрушенных клеток, диффузией через поры клеточной оболочки и заканчиваетсямассопереносом веществ от поверхности материала в раствор.
Оболочки клеток обладают дифильными свойст--вами, с преобладанием гидрофильности. Процесс проникновения экстрагента в клетку определяется степенью гидрофильности материала, природой экстрагента, числом и размером пор в клеточной стенке. "ем больше сродство экстрагента к материалу, тем он быстрее смачивает стенки капилляра, проникает в сырье до уравновешивания сил капиллярного подъема и силы тяжести гидростатического столба жидкости (экстрагента) в капилляре (рис. 14.1) 12*
355
Сила капиллярного подъема F может быть представлена уравнением:
F = 2nracosd,
где г — радиус капилляра, м; о — коэффициент поверхностного натяжения; 9 — краевой угол смачивания (образован жидкостью и стенкой капилляра, град) Если он острый, то жидкость проникает в капилляр, и высота подъема зависит от его величины и радиуса капилляра. Если
2acos8 Pgr
F = Р, Р = pgnr'h, то h =
где Р — сила тяжести, Н; h — высота подъема жидкости в капилляре, м.
Проникновению экстрагента в капилляры мешает находящийся в них воздух. Для интенсификации процесса предложено предварительное вакуумирование сырья, подача экстрагента под повышенным давлением или замена воздуха в порах на легко растворимый газ.