
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
13.7. Приготовление растворов для ампулирования
13.7.1. Требования к исходным веществам. Растворение
Получение растворов проводят в помещениях второго класса чистоты с соблюдением всех правил асептики при периодическом включении бактерицидных ламп. Растворение осуществляется в герметически закрываемых реакторах из фарфора, стекла или реакторах, покрытых эмалью (с паровой рубашкой и мешалкой). Общая схема технологии представлена следующими операциями: растворение, изотонирова-ние, стабилизация, введение консервантов, стандартизация, фильтрование (простое и стерилизующее). В зависимости от свойств лекарственных веществ некоторые из стадий могут быть исключены, например изотонирование, стабилизация, введение консервантов. При растворении легкоокисляющихся веществ из воды удаляют кислород,^астворимость которого при температуре 20 °С составляет 50 мг/л. Обычно предлагается дидячелде. или барботирование инегггного газа, а для полного удаления кислорода необходимо их сочетание. Вода подвергается кипячению в течение 15 мин, 320
охлаждается и насыщается инертным газом с потоком 200 мг/мин. Более эффективно применение углерода ач так как его растворимость в воде — Тл1 азота — 15 мг/л, аргона — 56 мг/л и ге-
8 мг/л. Однако при насыщении воды углерода
диоксидом изменяется реакция среды, так как при растворении 690 мг/л значение рН достигает4,16; 55 мг/л —4,71; 2,8 мг/л ^~*5^х Это нежелательно при ампулировании растворов, содержащих соли Са++, но способствует стабилизации соединений, подверженных декарбоксилированию. Перед барбота-жем газ обязательно подвергают стерилизующей фильтрации. Перекачивать воду сжатым воздухом при получении растворов лекарственных веществ, подверженных окислению, нельзя, так как она насыщается кислородом из воздуха, поэтому применяют вакуум. Изготовление масляных растворов и растворов медленно растворяющихся лекарственных веществ ведут при нагревании и перемешивании.
Все исходные вещества должны удовлетворять требованиям ГФ или НТД — ГОСТ, ТУ, ВФС и другим. Для некоторых веществ ГФ предъявляет повышенные требования к чистоте «сорт для инъекции». К ним относятся: магния сульфат, кальция хлорид, кофеин-бензоат натрия, эуфиллин, гексаметилентетра-мин, натрия цитрат, натрия гидрокарбонат, натрия гидроцитрат. Для глюкозы и желатина ГФ введено требование апирогенности, так как они являются хорошей питательной средой для микроорганизмов. Если лекарственное вещество не отвечает этому требованию, его подвергают очистке.
13.7.2. Изотонирование
Расчеты изотонических концентраций см. том 1
13.7.3. Стабилизация растворов
Некоторые лекарственные вещества нестойки при хранении, не выдерживают тепловую стерилизацию и подвергаются различным химическим превращениям в растворе. При этом обычно протекают следующие химические реакции: гидролиз, окислительно-восстановительные реакции, фотохимические процессы, изомеризация и др. Многие реакции инициируются под
321
11—942
действием света, кислорода воздуха, повышенной температуры при стерилизации, изменения значения рН раствора и выделения катализаторов за счет выщелачивания стекла в присутствии воды. В растворе из воды дистиллированной могут оказаться ионы тяжелых металлов, так как гидриды многих из них перегоняются с водяным паром. Уменьшения их количества ниже 10~6 моль/л достигают лишь ионообменной очисткой воды.
Стабилизация растворов проводится физическими и химическими методами. К физическим относятся: раздельное ампулирование вещества и растворителя, соблюдение принципа газовой защиты, подбор ампул из химически стойкого материала, замена стекла на полимер. Химические методы основаны на добавлении стабилизаторов или антиоксидантов.
Обоснование стабилизации растворов солей слабых оснований и сильных кислот и сильных оснований и слабых кислот см. том 1.
Особенности стабилизации растворов легкоокис-ляющихся веществ в промышленном производстве представлены в разделе 13.7.1. Кроме того, из ампул удаляется воздух, а наполнение и запайка их проводятся в атмосфере инертного газа. В тех случаях, когда этого недостаточно, добавляют антиоксиданты : (1—3 г/л). В порядке уменьшения активности их можно расположить следующим образом: натрия сульфит и метабисульфит > тиомочевина > мерказо-лил > цистеин >■ метионин.
При стабилизации масляных растворов, кроме газовой защиты, добавляют жирорастворимые анти-оксиданты: бутилокситолуол, бутилоксианизол, ос-токо-^ ферол, пропилгаллат, аскорбилпальмитат, кислоту йЪрдигидрогваяретовую, кверцетин и их синергические смеси. Эффективность антиоксидантов этой группы в значительной степени зависит от исходной концентрации гидропероксидов и других продуктов окисления масла. Предложен надежный способ их удаления введением в масло вторичных и третичных аминов гидрохлоридов, и гилробромидов с последующей термообработкой (предварительной стерилизацией) при температуре 180 °С в течение 30 мин, что приводит почти к полному разрушению гидропероксидов. Подобное действие оказывают и некоторые лекарственные вещества — аминазина гидрохлорид, димедрол в кон-
322
центрациях Ы0 3—1-10 4 моль/л. Стабильность растворов при этом повышается в несколько раз.
раствор тетацин-
10
Для связывания ионов тяжелых металлов, ката-лизирующих процесс окисления, используют комплексы: например, ЭДТА и ее соли; динатриевую соль ЭДТА и тетацин-кальций. Так, в 20 и 50 % растворах
билигноста применяется кальция.
13.7.4. Введение консервантов
Добавление консервантов в раствор производится в тех случаях, когда нельзя гарантировать сохранение стерильности. При этом возможно снижение температуры стерилизации или сокращение времени ее проведения. Характеристику консервантов и область их применения см. том 1
13.7.5. Стандартизация
После получения раствора его анализируют в соответствии с требованиями общей и частных статей ГФ. Особое внимание уделяется определению количественного содержания лекарственных веществ, значению рН, прозрачности, степени мутности и цветности растворов. Затем растворы фильтруют.