
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
11.4. Микрокапсулы
Микрокапсулы — мельчайшие частицы твердого, жидкого или газообразного вещества, покрытые оболочкой из полимерного или другого подходящего ма териала. Мйкрокапсулирование — технологический процесс упаковки этих частичек в индивидуальную оболочку.
Микрокапсулы имеют размеры от 1 до 500 мкм, содержание действующих веществ в них составляет от 15 до 99%. Частицы менее 1 мкм (нанокапсулы) предназначаются для парентерального введения.
Форма микрокапсул определяется агрегатным состоянием содержимого и методом получения: жидкие и газообразные лекарственные вещества придают шаровидную форму, твердые — овальную или неправильную геометрическую форму
Микрокапсулированию подвергают целый ряд лекарственных веществ, в том числе витамины. Ферменты, антибиотики, сердечно-сосудистые, снотворные, диагностические средства, которые затем выпускают
238
в виде различных лекарственных форм: порошков. таблеток, капсул, суспензий, эмульсий и др. Основ-ными целями этого процесса являются: маскировка вкуса и запаха лекарственных веществ, предохранение их от воздействия внешних факторов, предотвращение несовместимости, возможность выпуска жидких или газоооразных веществ в удооной готовой лекарственной форме. Мйкрокапсулирование позволяет получить препараты с направленным действием и регулируемой скоростью выделения лекарственного вещества, чтчЗ достигается нанесением оболочек, которым в зависимости от назначения, фйЗИки-Хймических показателей капсулируемого вещества можно придать необходимые свойства. В качестве материалов для оболочек, хорошо прилипающих к капсулируемому веществу, обеспечивающих герметичность, эластичность, опреде-ленную проницаемость, прочность и стаоильностьпри хранении, используют большое количество натуральных и синтетических полимеров. Это водорастворимые соединения: желатин, гуммиарабик, крахмал, ПВП, КМЦ, спирт поливиниловый. Из__вод.Р1Шрасхво.^_ римых соединений используют каучук, силиконы, этил-целлюлоза, ацетатцеллюлоза, полиэтилен, полипропилен, полиметакрилат, полиамид. Применяют также воски и липиды: парафин, спермацет, воск пчелиный, кислота стеариновая, кислота пальмитиновая. Из спиртов используют цетиловый, стеариловый, лаури-ловый. Применяют также и энтеросолюбильные соединения: шеллак, зеин, ацетофталат-, ацетобутират-, ацетосукцинат целлюлозы.
11.4.1. Методы микрокапсулирования
Их можно разделить на три основные группы: физические, физико-химические и химические.
Физические методы основаны на механическом нанесении оболочек на частицы лекарственного вещества. К физическим методам относятся: дражиро-вание, распыление, диспергирование, напыление в псевдоожиженном слое.
Наиболее простым является метод дражирования, при котором однородные фракции кристаллов во вращающемся дражировальном котле покрываются раствором пленкообразователя. Толщина оболочки микрокапсул зависит от природы и концентрации пленко-
239
Рис. 11.7. Принцип работы системы для получения микрокапсул методом напыления в псевдоожиженном слое. Объяснение в тексте.
образователя, скорости пульверизации раствора и температуры.
Метод распыления используется при получении ми-крокапсул с твердым ядром и жировой оболочкой. Ядра лекарственного вещества суспендируют в растворе или расплаве жирового компонента и распыляют в распылительной сушилке. При этом частицы лекарственного вещества покрываются жидкими оболочками, которые затвердевают в результате испарения растворителя или охлаждения.
Микрокапсулы с твердым или жидким ядром лекарственного вещества часто получают .методом диспергирования жилкости. Раствор пленкообразователя с диспергированным лекарственным веществом в виде капель или тонкой струи подается в сосуд с несмеши-вающейся жидкостью (часто масло). Раствор с помощью мешалки диспергируется на мелкие капельки, которые охлаждаются, затвердевают, их отделяют от масла, промывают и сушат.
240
\
Широко используют методы напыления в псевдоожиженном слое (рис. 11.7). Лекарственное вещество растворяют или эмульгируют при нагревании в смесителях в водном растворе пленкообразователя (1) и (2). Нагретую жидкость насосом (3) подают в распылительное устройство (4) и распыляют в камере (6) под действием сжатого воздуха или газа, поступающего из ресивера (5). В нижней части камеры находится псевдоожиженный слой порошка, который создается потоком воздуха, подаваемого под решетку (9). Отработанный воздух из камеры отводится через патрубок (7). Капельки жидкости, попадая в псевдоожиженный слой порошка, постепенно затвердевают и удаляются из камеры. В камере устанавливается горизонтальная мешалка с электронагревателем для более интенсивного перемешивания порошка, который подается из питающего бачка (8) насосом (9). Полученные микрокапсулы имеют правильную сферическую форму и одинаковый размер, который зависит от вязкости и поверхностного натяжения распыляемого раствора и характеристик применяемого "устройства. В настоящее время имеется ряд усовершенствованных аппаратов, например, в которых кристаллы ле-кадственного вещества- интенсивно перемешиваются во всем объеме аппарата и на них" распыляется раствор пленкообразователя. При"этом происходит моментальное отложение последнего на кристаллах и одновременное испарение растворихёляТ
Физико-химические методы основаны на разделении фаз, они позволяют заключить в оболочку вещество в любом агрегатном состоянии и получить микрокапсулы разными по размеру и свойствам пленок (толщина, пористость, эластичность и др.). Лекарственные вещества диспергируют в растворе или расплаве пленкообразователя. При изменении какого-либо параметра дисперсной системы (температура, состав, значение рН, введение химических добавок) добиваются образования мельчайших капелек — ко-ацерватов (от лат. coacervare — сгребать в кучу) вокруг частиц диспергируемого вещества в виде «ожерелья». Коацерваты сливают. После затвердения отделяют, получившиеся микрокапсулы от дисперсионной среды.
В настоящее время коацервацию рассматривают как процесс расслоения двух фаз, обогащенной и
241
обедненной молекулами растворенного вещества. Фаза, более богатая растворенным веществом, выделяется в виде коацервата. Коацервация из раствора сопровождается сближением, концентрированием молекул в меньшем объеме, потерей ими воды и переходом в осадок. В зависимости от химического состава и характера сил взаимодействия между веществами она может быть простой и сложной. Простые коацер-ваты образуются при обезвоживании гидрофильных коллоидов, что приводит к снижению их растворимости. Например, капсулируемое вещество (масла или растворенные в них вещества) эмульгируют при нагревании (50 °С) в растворе желатина, добиваясь при этом размера капель в эмульсии 2—5 мкм. При постоянном перемешивании добавляют 20 % водный раствор натрия сульфата. Дегидратирующие свойства натрия сульфата вызывают коацервацию желатина, образуя гетерогенную жидкую систему, состоящую из обогащенной и обедненной фаз. В частности, в 3 % растворе желатина 2,02 % его будет находиться в ко-ацерватном слое и 0,98 % — в равновесной жидкости. С понижением температуры микрокапли коацервата концентрируются вокруг капель масла, образуя вначале «ожерелье», а затем покрывают их сплошной тонкой оболочкой, для застудневания которых смесь выливают в холодный раствор натрия сульфата (19 °С). Микрокапсулы отфильтровывают, промывают. После чего они затвердевают при 37 % воздействии водного раствора формалина или 25 % глутарового раствора.
В настоящее время успешно применяют метод сложной коацервации, основанный на взаимодействии между положительными и отрицательными зарядами двух полимеров. Сложные коацерваты могут быть одно-, двух- и трехкомплексные. В однокомплексных коацерватах оба полимера относятся к одной и той же группе химических соединений и несут равное количество положительных и отрицательных зарядов, т. е. являются амфионами. Положительные заряды одного амфиона притягиваются к противоположному и наоборот.
В двухкомплексных коацерватах оба полимера несут противоположные заряды: положительные макроионы — макрокатионы или отрицательные — макро-
анионы. Коацерваты возникают при взаимодействии двух противоположно заряженных ионов.
При образовании трехкомплексных коацерватов участвуют амфион (макрокатион или макроанион) и микроион (катион или анион).
Для получения коацерватов используют и целый ряд других методов: испарение легколетучего растворителя в жидкой среде; затвердение пленкообразующего материала при охлаждении в жидкой среде и др
Химические методы основаны на образовании оболочек вокруг ядер микрокапсулируемого вещества в результате полимеризации или поликонденсации пленкообразующих компонентов. Реакция идет на поверхности раздела двух фаз при определенных количественных соотношениях капсулируемого вещества и материала оболочки при определенных концентрациях полимера в растворе. Материал оболочки должен легко адсорбироваться на поверхности диспергированных частичек. Химические методы применяются для микро-капсулирования как твердых, так и жидких веществ. Размеры микрокапсул можно изменять в широком диапазоне, с содержанием капсулированного вещества до 99 %
В зависимости от целей, технологических возможностей, свойств капсулируемых веществ и полимерных материалов выбирают метод микрокапсулирования
Контрольные вопросы
Дайте характеристику капсул и микрокапсул
Какие виды капсул выпускает фармацевтическая промышлен ность?
Какими способами получают желатиновые капсулы?
Перечислите основные стадии технологического процесса полу чения желатиновых капсул Дайте анализ факторов, влияющих на качество капсул
Каковы принципы работы машин для получения капсул методами погружения, капельным и прессования
6. Какие требования предъявляет ГФ XI к капсулам и по каким показателям проводится контроль качества?
7 Перечислите лекарственные средства, выпускаемые а твердых и мягких капсулах
8. В чем состоит процесс микрокапсулпрования? Охарактеризуйте основные методы микрокапсулирования
9 Каковы перспективы развития производства капсул и микрокапсул?
242
243