
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
2.2. Биологическая доступность
Способность лекарственного вещества оказывать лечебное воздействие является лишь его потенциальным свойством, которое может значительно изменяться в зависимости от применения его в виде той или иной лекарственной формы. При использовании различного исходного сырья, вспомогательных веществ, технологических операций, оборудования могут быть получены препараты, отвечающие требованиям фармакопеи или нормативно-технической документации (НТД), содержащие одинаковое количество действующего вещества, но при этом имеющие разную скорость высвобождения лекарственного вещества из лекарственной формы и разную скорость и полноту всасывания. Если не учитывать перечисленных факторов, то это может привести к тому, что на различных заводах и производственных сериях будут получены неэквивалентные препараты. При назначении разных доз в организм больного будет поступать разное количе-
24
ство лекарственного вещества, т е. препараты окажутся терапевтически неадекватными.
Выявление терапевтической неадекватности препаратов обусловило изменение взглядов как на процесс изготовления, так и на оценку качества лекарственных препаратов. Стало очевидным, что нельзя только на основании показателей, принятых в НТД, включая количественное содержание действующего вещества, получить полную информацию о возможном изменении его активности в лекарственной форме. Для этого необходимо знать, как ведет себя лекарственное вещество в условиях организма, т. е. знать его биологическую доступность.
Биологическая доступность (БД) определяется долей всосавшегося в кровь лекарственного вещества от общего содержания его в соответствующей лекар ственной форме, скоростью его появления в кровеносном русле, продолжительностью нахождения его определенной концентрации в организме Исследование биологической доступности дает ответы на вопросы какая часть дозы лекарственного вещества всосалась, как быстро происходило всасывание; как долго и в какой концентрации лекарственное вещество находилось в организме.
В 1974 г. понятие биологической доступности было признано XVII ассамблеей Всемирной организации здравоохранения (ВОЗ)
Существенной трудностью исследования БД является отсутствие надежных методов, которые позволяли бы на основании опытов in vitro или на животных определить БД препарата для человека. Исследования in vitro и на животных дают полезную информацию о БД лекарственных препаратов, по они имеют ценность лишь в том случае, если подтверждена корреляция результатов опытов с данными, полученными на людях. Поэтому отдается предпочтение исследованию БД на людях (добровольцы или больные в условиях клиники).
Существуют два основных метода определения БД. Первый метод — фармакокинетический — основан- на измерении изменения концентрации лекарственного вещества в плазме крови во времени или путем определения общего количества лекарственного вещества или его метаболитов, выделившихся с мочой после введения одной или повторных доз.
25
Второй метод — фармакодинамический — основан на измерении фармакодинамических или биохимических реакций на лекарственное вещество или его активные метаболиты. Второй метод является более сложным, поэтому определение БД чаще проводится с помощью фармакокинетического метода.
Степень БД определяют в сравнении со стандартной лекарственной формой, которая хорошо всасывается. При этом используют одинаковые дозы стандартной и исследуемой лекарственной формы. БД выражается в процентах и может быть представлена в виде следующего уравнения:
БД = -|- 100,
где БД — количество всосавшегося лекарственного вещества после назначения: А — стандартной лекарственной формы, В — исследуемой формы.
Различают абсолютную и относительную БД. В качестве стандартной лекарственной формы при определении абсолютной БД применяют раствор для внутривенного введения, что дает наиболее четкие результаты, так как вся доза поступает в большой круг кровообращения.
На практике чаще приходится определять относительную БД, когда стандартом является хорошо всасывающаяся пероральная лекарственная форма (например, раствор). При фармакокинетическом методе определения БД производят последовательный забор проб биожидкостей (чаще всего кровь или мочу) в течение строго определенного времени и с помощью наиболее точных и чувствительных аналитических методов определяют в них концентрацию лекарственного вещества. На основании полученных данных (содержание веществ или их метаболитов) строят графики, отражающие кинетику того или иного лекарственного вещества во врсени, и с помощью фармакокинети-ческих методов рассчитывают БД.
ВОЗ выделила группы лекарственных веществ, требующих изучения БД. Они имеют крутую кривую зависимости между дозой и реакцией вследствие плохой растворимости, своего пролонгированного действия или из-за того, что покрыты оболочкой. К их числу в первую очередь относятся стероидные гормоны, сердечные гликозиды, препараты гипогликемического дей-
26
ствия, противосудорожные, кумариновые антикоагулянты, некоторые антибиотики, химиотерапевтические препараты.
Сравнительная сложность определения БД на людях, требующая в ряде случаев решения этических вопросов, побудила исследователей искать другие пути.
Исследования in vivo невозможны для массовой оценки качества препаратов в производственных условиях. Необходимы более простые, но точные методы in vitro, при которых используют способность лекарственных веществ растворяться и высвобождаться из лекарственной формы. При разработке этого теста (он получил название «теста растворения») исследователи исходили из предположения, что всасывание большинства лекарственных веществ в желудочно-кишечном тракте происходит посредством диффузии ингредиентов через липофильные мембраны и с некоторым приближением может быть выражено известным уравнением Фика.
ds/dt= K{ct-c2),
где dc/dt — скорость диффузии, см/мин; К — констан та диффузии; С\ — концентрация с внешней стороны мембраны, мг/мл; с2 — концентрация с внутренней стороны мембраны, мг/мл.
Скорость диффузии лекарственного вещества пропорциональна его концентрации в месте всасывания
В практике имеет место весьма частая, хотя и не обязательная, корреляция между скоростью растворения (высвобождения в растворяющую среду лекарственного вещества) и степенью его БД. Таким образом, растворение в первом приближении характеризует БД препарата. Доступность, определяемую в опытах in vitro, ряд исследователей называют в отличие от биологической фармацевтической.
Впервые «тест растворения» введен в XVIII изда ние фармакопеи США — в 1970 г на 7 препаратов и в национальный формуляр — на 5 препаратов С этого времени в США работы по изучению скорости растворения интенсивно развивались, и уже в фармакопеях США последующих лет число препаратов, подвергаемых «тесту растворения», значительно возросло: в 1975 г. их было 20, 1981 г.— 71, 1983 г —203, а в
27
XXI издании (1985 г.) — 700. Этот тест введен в 1980 г в Британскую, в 1982 г. — Японскую, в 1978 г. — Европейскую фармакопею, в 1977 г. — Компендиум медикаменторум стран СЭВ. В 1985 г. в нашей стране утверждена временная фармакопейная статья («ВФС) «Растворение», она включена в общую статью «Таблетки» ГФ XI. Под растворением подразумевают количество действующего вещества, которое в стандартных условиях за определенное время должно перейти в раствор из твердой дозированной лекарственной формы.
Существует несколько методов определения скорости растворения, которые классифицируют исходя из объема среды, ее подвижности, значения рН и других физических показателей. Чаще всего их классифицируют по методам с естественной и принудительной конвекцией растворяющей среды.
Многими фармакопеями мира, в том числе и нашей страны, принят для этой цели прибор типа «вращающаяся корзинка», описание которого дано в главе «Таблетки». В настоящее время внедряются приборы, автоматизирующие процессы определения скорости растворения, а также позволяющие проводить исследования препаратов в условиях, близких к условиям желудочно-кишечного тракта. Так, в приборе «Резо-мат -1» (ФРГ) высвобождение лекарственных веществ из лекарственной формы в раствор происходит в водной фазе (при изменении значения рН от 1,2 до 7,8), которая находится в гидростатическом равновесии с липидным растворителем — хлороформом. Водная фаза имитирует среду желудочно-кишечного тракта, ли-пидный растворитель — всасывание через липидные мембраны. Определение содержания лекарственного вещества в той и другой фазе характеризует процессы его высвобождения и всасывания.
Фирма «Сарториус» (ФРГ) выпускает установку, включающую две модели, которые позволяют изучать скорости растворения и всасывания твердых лекарственных форм. При определении растворения моделируют условия функционирования желудочно-кишечного тракта. Для этого искусственный желудочный сок (рН 1,2), находящийся в камере растворения, через 30 мин превращают в искусственный кишечный сок (рН 6,5). Во время испытания камера вращается вокруг горизонтальной оси, имитируя перистальтические
28
движения желудка и кишечника. Через заданные промежутки времени определенный объем содержимого автоматически проталкивается в коллектор для сбора фракций.
Модель всасывания состоит из диффузионной камеры с двумя отсеками, разделенными липидным барьером, представляющим мембранный фильтр. Имеются два типа фильтров: для изучения всасывания из желудка и из кишечника. В один из отсеков помеща ется искусственный желудочный или кишечный сок, в другой — искусственная плазма. В ходе диффузии лекарственного вещества в искусственную плазму определяют константу скорости диффузии, которая пропорциональна константе скорости всасывания. Константу скорости диффузии лекарственного вещества через мембрану можно рассчитать по уравнению.
Vd =
dt
где Vd — скорость диффузии из искусственного желудочного или кишечного сока в искусственную плазму (обратная диффузия равна 0), см/мин; / — время, мин; М\ — количество растворенного вещества в желудочном или кишечном соке, мг/мл; Мг — количество вещества в плазме, мг/мл; V — объем желудочного или кишечного сока, мл; F — площадь мембраны, см2; Kd — константа скорости диффузии (мембрана определенной толщины), см/мин.
Константа скорости диффузии может быть подсчитана как через уменьшение концентрации лекарственного вещества в желудочном или кишечном соке, так и через изменение его концентрации в искусственной плазме.
Следует подчеркнуть, что любой метод и прибор ценны тогда, когда они дают результаты, коррелирующие с опытами in vivo. Исследования БД позволяют создавать терапевтически адекватные препараты, объективно оценивать влияние фармацевтических факторов на их биологическую активность, предвидеть кинетику в организме и в конечном счете повысить терапевтическую эффективность.
Таким образом, в комплексе фармацевтических дисциплин биофармация занимает особое место благодаря не только новизне идей, но и главным образом в связи со значением (для теории и практики со-
29
временной фармации и медицины) фактов, полученных в ходе биофармацевтического эксперимента. Новая биофармацевтическая концепция заполнила глубокий вакуум между клинической медициной и фармацией. За недолгий период своего существования биофармация обогатилась множеством открытий и заняла прочное место в системе современного лекарствоведения.
Контрольные вопросы
Дайте определение биофармации, охарактеризуйте основные на правления биофармацевтнческих исследований и укажите их значение для теории и практики фармации и медицины.
Назовите предпосылки возникновения биофармацевтнческого направления в фармации
Назовите фармацевтические факторы, оказывающие влияние на терапевтическую эффективность препаратов. Приведите примеры.
Какие фармацевтические факторы и почему представляют инте рес для врача?
Каковы причины возникновения терапевтической неадекватнос ти лекарственных препаратов?
Что такое биологическая доступность лекарственных препаратов и каковы методы ее определения?
7 В чем состоит трудность определения биологической доступности препаратов и каковы пути решения этой проблемы?
8. Дайте анализ методов и приборов определения фармацевтической доступности лекарственных препаратов.