
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
Весь процесс прессования предложено схематично разбить на три стадии прессования: уплотнение (под-прессовка), образование компактного тела, объемное сжатие образовавшегося компактного тела (рис. 9.19). В каждой из этих стадий протекают характерные для нее механические процессы.
На первой стадии прессования под воздействием внешней силы происходит сближение и уплотнение частиц материала за счет смещения частиц, относительно друг друга и заполнения пустот. Усилия, преодолеваемые при этом, незначительны, уплотнение становится заметным уже при малых давлениях. Прилагаемая энергия в основном расходуется на преодоление внутреннего (между частицами) и внешнего (между частицами и стенками матрицы) трения.
На второй стадии с увеличением давления прессования происходит интенсивное уплотнение материала за счет заполнения пустот и различных видов деформации, которые способствуют более компактной упаковке частиц. Деформация, которая происходит за счет упругости материала, помогает частицам взаимно вклиниваться, что увеличивает контактную поверхность. Этому же способствует и деформация, происходящая за счет пластических свойств материала, которая заставляет частицы изменить свою форму, и плотнее прилегать другу к другу. Деформация, определяемая хрупкостью материала, характеризующаяся разрушением прессуемого материала, происходит только в тех случаях, когда напряжения, возникающие в прессуемом материале, превышают по величине предел текучести вещества. При этом имеет место механическое разрушение частиц на более мелкие, сопровождающееся значительным увеличением свободной поверхностной энергии, что создает условия для возникновения контактов между частицами. На этой стадии прессования из сыпучего материала об-
179
|
|
1 |
|
|
г |
|
|
п |
|
|
|
D |
U |
|
|
U |
|
|
|
|
|
|
1 |
|
|
|
2 |
|
|
|
я |
|
Рис. 9.19. Стадии прессования сыпучих материалов. Объяснение в тексте.
разуется компактное пористое тело, обладающее достаточной механической прочностью.
На третьей стадии при высоких величинах давления, когда механическая прочность таблеток изменяется незначительно, происходит, возможно, объемное сжатие частиц и гранул порошка без заметного увеличения контактных поверхностей.
В действительности между тремя стадиями нет резких границ, так как процессы, протекающие во второй стадии, имеют место в первой и третьей стадиях и можно говорить только о преимущественной роли отдельных процессов в каждой из них.
Исследованиями установлено, что характер уплотнения гранул и частиц порошков при прессовании зависит от их прочности. Так, уплотнение гранул сульфадимезина (величина разрушающих усилий равна 5,7 Н) происходит в основном за счет деформации, определяемой упругими и пластическими свойствами материала. При давлении свыше 100 мПа гранула, не разрушаясь, заполняет все свободное пространство около себя и образует непрерывную контактную поверхность с соседними гранулами. При давлении прессования свыше 200 мПа происходит объемное сжатие гранул. Форма гранул при этом изменяется незначительно, несколько уменьшаются их размеры.
Иной характер уплотнения при прессовании гранул пиперазина и уросала — смесь гексаметилентет-рамина и фенилсалицилата (величина разрушающих усилий гранул равна 3,9 и 1,2 Н соответственно).
До величины давления, равной 150—160 мПа, процесс уплотнения гранул пиперазина идет за счет деформации, обусловленной упругими и пластическими свойствами материала, и частичного разрушения гранул, свыше 160 мПа — разрушается большинство гранул. При прессовании уросала уже при давлении
180
А 50 100 150 200 300 400 500 600 РмПа
Рис. 9.20. Кривая зависимости относительного уплотнения от давления прессования.
АБ — прессование; БВ — снятие давления; АБ, — предварительное уплотнение (стадия 1); Б|Ба — упругопластическая деформация (стадия 2); БаБ — сжатие (стадия 3).
около 60—80 мПа начинается процесс интенсивного разрушения гранул.
Таблетирование лекарственных веществ обычно происходит при величинах давления, равных 25— 250 мПа; более высокое давление применяют крайне редко. На рис. 9.20 показана зависимость относительного уплотнения от давления прессования, представленная двумя кривыми: АБ — кривая прессования; БВ — кривая снятия давления. После снятия давления происходит некоторое расширение таблетки, обусловленное упругостью материала.
Какие же силы обеспечивают сцепление частиц при таблетировании? Существует несколько гипотез, объясняющих механизм превращения сыпучего материала, состоящего из отдельных, не связанных между собой частиц,в твердое тело — таблетку.
Под влиянием давления прессования происходит сближение частиц и создаются условия для проявления сил межмолекулярного и электростатического взаимодействия. Большинство лекарственных порошков имеет кристаллическую структуру, каждому типу которой соответствует свой уровень потенциальной энергии связи, от чего в основном и зависит прочность таблетки. Потенциальная энергия этих связей различна и изменяется от единицы до сотен килоджоулей на моль. Силы межмолекулярного взаимодействия проявляются при сближении частиц на расстояние около 10~6—10~7 см. Величина этих сил пропорцио-
181
нальна поверхности контакта, а поскольку суммарная площадь контакта реальных твердых тел даже при сравнительно высоких величинах давления не превышает 1 % от номинальной, то в связи с этим возможны другие гипотезы о механизме прессования.
Прочный контакт может образоваться в результате механического зацепления частиц или их вклинивания в межчастичные пространства. Влияние механического сцепления частиц на прочность таблетки подтверждено экспериментами, в которых показано, что чем сложнее поверхность частиц, тем прочнее спрессованная таблетка.
Образование контактов может происходить в результате сплавления под давлением — свойства ряда веществ плавиться под действием давления при пониженной температуре. Таким свойством обладает фенилсалицилат, гексаметилентетрамин, бромкамфора, натрия хлорид и ряд других соединений. При развитии давления в процессе прессования частицы этих веществ сплавляются в точках наибольшего сжатия, а при весьма высоких величинах давления могут образовывать прочный поликристаллический агрегат, который, как правило, долго не распадается в жидкой среде.
Существенное влияние на процесс прессования оказывает влага, находящаяся в прессуемом материале. С увеличением влажности гранул (порошка) ухудшаются сыпучесть и точность дозы. Уменьшение влажности до критического значения (значительно меньшее оптимальной влажности, необходимой при таблетировании) может снизить прессуемость порошков. В соответствии с теорией П. А. Ребиндера силы межчастичного взаимодействия определяются наличием жидких фаз на поверхности твердых частиц. В гидрофильных веществах адсорбционная вода с толщиной пленки до 3 мкм является плотной и прочно связанной. Она не может свободно перемещаться и не ослабляет ван-дер-ваальсовы силы молекулярного или ионного притяжения. При увеличении влажности и образовании более толстого слоя ван-дер-ваальсовы силы уменьшаются, а вместе с ними уменьшается механическая прочность таблетки.
Таблетки обладают наибольшей прочностью при оптимальном количестве остаточной влаги, которая соответствует влаге, связанной с материалом адсорб-
182
ционными силами с образованием полимолекулярных связей. Возникновению контактов способствуют связывающие вещества. Частицы более подвижного связывающего вещества, деформируясь при меньшем давлении, заполняют пространство между частицами прессуемого вещества.
Определенный вклад в теоретические вопросы прессования вносят экспериментальные и теоретические исследования, связанные с соединением различных материалов в твердой фазе («холодная сварка»).
Механизм соединения материалов в твердой фазе рассматривают протекающим в три основные стадии: образование физического контакта; активизация контактных поверхностей; развитие объемного взаимодействия.
Образование физического контакта происходит при сближении атомов соединяемых материалов на расстояние, при котором проявляются ван-дер-ваальсовы силы или слабое химическое взаимодействие. Активация контактных поверхностей происходит при деформации, обусловленной пластическими свойствами частиц более твердого материала. Объемное взаимодействие наступает с момента образования активных центров. При этом оно происходит в местах физического контакта с образованием прочных химических связей. В этой стадии могут иметь место и диффузионные процессы.
Во всех случаях основными параметрами процесса холодной сварки являются давление, температура и длительность взаимодействия. В связи с этим считают механизм взаимодействия частиц при прессовании порошков адекватным механизму взаимодействия частиц при холодной сварке в твердой фазе. Длительность процесса прессования лекарственных порошков на роторных машинах даже при средних частотах вращения ротора (30—40 об/мин) составляет в лучшем случае десятые доли секунды. Таким образом, характер уплотнения порошков во многом может быть подобен таковому при сварке взрывом.