
- •Глава 1
- •Глава 2
- •2.2. Биологическая доступность
- •Глава 3
- •3.1. Условия централизованного выпуска лекарственных препаратов
- •3.2. Общие принципы организации укрупненного фармацевтического производства
- •3.2.1. Производственный регламент
- •3.2.4. Энергетический баланс
- •3.3.1. Машины
- •3.3.2. Аппараты
- •4.1. Теплопроводность
- •4.2. Конвекция
- •4.3. Лучеиспускание
- •4.4. Сложный теплообмен
- •4.7. Парозапорные устройства
- •4.8. Охлаждение. Конденсация
- •Глава 5 выпаривание
- •5.1. Простое (однократное) вакуумное упаривание
- •5.3. Центробежные роторно-пленочные выпарные аппараты
- •5.4. Побочные явления при выпаривании
- •Глава 6 сушка
- •6.1. Теоретические основы сушки
- •6.1.1. Статика
- •6.1.2. Свойства влажного воздуха
- •6.2.1. Конвективные (воздушные)
- •6.2.2. Контактные
- •6.2.3. Специальные способы сушки
- •7.1. Измельчение
- •7.1.1. Особенности измельчения твердых тел
- •7.1.3. Работа по измельчению (расход энергии)
- •7.1.4. Машины для измельчения твердых тел
- •7.2.1. Механическое разделение (ситовое)
- •7.2.2. Разделение частиц в зависимости от скорости их осаждения в водной среде
- •7.2.3. Разделение частиц потоком воздуха (сепарация)
- •7.3.1. Смесители
- •Глава 8
- •8.1.2. Частная технология сборов
- •8.2. Порошки (pulveres)
- •8.2.1. Технология порошков
- •Глава 9
- •9.3. Наполнители и основные группы
- •9.4. Технология таблеток
- •9.4.4. Прямое прессование
- •9.5. Характер уплотнения таблетируемых материалов. Теоретические основы прессования
- •9.6. Покрытие таблеток оболочками
- •9.6.1. Дражированные покрытия
- •9.6.3. Прессованные (напрессованные) покрытия
- •9.7. Многослойные таблетки
- •9.8. Каркасные таблетки
- •9.9 Тритурационные таблетки
- •9.10. Оценка качества таблеток (бракераж)
- •9.11. Фасовка и упаковка таблеток
- •Глава 10 драже (dragae). Гранулы (granulae)
- •10.2. Гранулы
- •11.3.4. Покрытие капсул оболочками
- •11.3.5. Контроль качества
- •11.4. Микрокапсулы
- •11.4.1. Методы микрокапсулирования
- •Глава 12
- •12.1. Классификация растворов
- •12.5.2. Фильтрование
- •12.5.3. Центрифугирование
- •12.6. Особенности технологии растворов
- •12.7 Стандартизация растворов
- •12.8. Сиропы (sirupi)
- •13.1. Общая характеристика. Требования. Классификация
- •13.2. Схема технологии.
- •13.3. Медицинское стекло. Определение основных показателей качества
- •13.4. Изготовление ампул
- •13.5. Подготовка ампул к наполнению
- •13.6. Растворители для стерильных и асептически приготовляемых лекарственных средств
- •13.6.1. Вода для инъекционных препаратов
- •13.6.2. Вода деминерализованная (Aquae demineralisata)
- •13.7. Приготовление растворов для ампулирования
- •13.7.1. Требования к исходным веществам. Растворение
- •13.7.2. Изотонирование
- •13.7.6. Фильтрование растворов
- •13.8.1. Наполнение ампул раствором
- •13.8.2. Запайка ампул и проверка ее качества
- •13.8.3. Стерилизация ампулированных растворов
- •13.11. Глазные лекарственные формы (formae medicamentorum ophtalmicae)
- •13.11.1. Глазные капли (Guttae ophthalmicae)
- •13.11.2. Глазные мази (Unguenta ophthalmica)
- •Глава 14
- •14.1. Теоретические основы экстрагирования
- •14.1.2. Смачивание веществ
- •14.1.3. Растворение биологически активных веществ растительного материала
- •14.1.6. Виды массопереноса
- •14.1.7. Потеря на диффузии
- •14.1.9. Факторы, влияющие на процесс массопередачи внутри частиц сырья и в свободном экстрагенте
- •14.2. Методы экстрагирования
- •14.2.3. Перколяция
- •14.2.5. Противоточное экстрагирование
- •14.2.6. Циркуляционное экстрагирование
- •14.2.7. Интенсификация процесса экстрагирования
- •14.2.8. Экстрагирование с использованием электроплазмолиза и электродиализа
- •14.2.9. Экстрагирование сжиженным углерода диоксидом
- •14.3.1. Технология настоек
- •14.3.2. Хранение настоек
- •Глава 15
- •15.1.1. Экстракционные препараты
- •15.1.2. Соки растений (Sued plantarum)
- •15.2. Препараты биогенных стимуляторов
- •Глава 16
- •16.2. Частная технология новогаленовых препаратов
- •Глава 17
- •17.2. Технология препаратов индивидуальных веществ
- •Глава 18
- •18.1. Общие методы производства органопрепаратов
- •18.1.1. Подготовка сырья
- •18.1.2. Технология препаратов, представляющих собой высушенные, обезжиренные и измельченные органы животных
- •18.2. Препараты гормонов
- •18.3. Препараты ферментов
- •Глава 19
- •19.1. Ферменты микробиологического синтеза (ферменты, синтезируемые микроорганизмами)
- •19.2. Иммобилизованные ферменты
- •Глава 20
- •Глава 21
- •21.1. Технология мазей
- •Глава 22
- •22.1. Пластыри
- •22.1.1. Пластыри смоляно-восковые
- •22.1.3. Каучуковые пластыри
- •22.1.4. Пластыри жидкие
- •22.2. Горчичники
- •23.1. Характеристика суппозиториев промышленного производства
- •23.2. Технология суппозиториев
- •23.3. Перспективы развития ректальных лекарственных форм
- •Глава 24
- •24.2. Пропел ленты
- •24.4. Аэрозоли ингаляционные
- •24.5. Аэрозоли для наружного применения
- •Глава 1. Перспективы развития технологии современных
- •Глава 6. Сушка. — г. П. Грядунова . .
- •Глава 17. Препараты индивидуальных веществ растительного
9.4.4. Прямое прессование
Прямое прессование — это процесс прессования негранулированных порошков.
Из технологии таблеток (см. схему 9.1) следует, что прямое прессование позволяет исключить 3—4 технологические операции и, таким образом, имеет преимущество перед таблетированием с предварительным гранулированием порошков. Однако, несмотря на кажущиеся преимущества, прямое прессование мед-леьло внедряется в производство. Это объясняется тем, что для производительной работы таблеточных машин прессуемый материал должен обладать оптимальными технологическими характеристиками (сыпучестью, прессуемостью, влажностью и др.). Такими характеристиками обладает лишь небольшое число негранулированных порошков, таких как натрия хлорид, калия йодид, натрия и аммония бромид, гекса-метилентетрамин, бромкамфора, ПАСК-натрий и дру-
160
6—942
161
гие вещества, имеющие изометрическую форму частиц, приблизительно одинакового гранулометрического состава и, как правило, не содержащие большого количества мелких фракций (т. е. частиц размером ri менее 0,1 мм). Они способны к самопроизвольному объемному дозированию и достаточно хорошо прессуются. При этом бромиды, хлориды и йодиды прессуют непосредственно, без вспомогательных веществ, предварительно просушив до оптимальной влажности и отсеяв от крупных и пылевидных частиц. При прямом прессовании бромкамфоры, гексаметилентетрами-на и ПАСК-натрия в состав массы для прессования вводят разрыхляющие и антифрикционные вещества.
Одним из методов подготовки лекарственных веществ к прямому прессованию является направленная кристаллизация. Метод заключается в том, что добиваются получения таблетируемого вещества в кристаллах заданной сыпучести, прессуемости и влажности путем подбора определенных условий кристаллизации. В СССР этим методом получают кислоты — ацетилсалициловую и аскорбиновую (с определенными размерами кристаллов).
Для прямого таблетирования лекарственных веществ, применяемых в малых дозировках (например, витамины, гормоны и др.), интерес представляют наполнители, обладающие хорошей прессуем.остью даже в присутствии лекарственных веществ. Часто с этой целью применяют лактозу безводную или высушенную распылением, микрокристаллическую целлюлозу и кальция дифосфат. Безводная лактоза способна к прямому прессованию и имеет хорошую текучесть. Она не теряет свойств таблетируемости даже при измельчении до тонкого порошка, хотя при этом ее текучесть и уменьшается. Лактоза, высушенная распылением, состоит из микрокристаллов, частичек аморфной и стекловидной структуры. Основная масса частиц имеет сферическую форму, обеспечивающую хорошую текучесть материала. Благодаря сочетанию частиц и микрокристаллов лактоза обладает хорошей прессуемостью. Недостатком ее является побурение в присутствии веществ основного характера и ухудшение текучести после измельчения. При высыхании и потере воды, обычно присутствующей в лактозе, она теряет способность к прямому прессованию. Микрокристаллическая целлюлоза, получаемая жестким гид-
162
ролизом а-целлюлозы специальных сортов древесины, значительно повышает прессуемость. Добавления 5— 20 % микрокристаллической целлюлозы к лекарственным веществам бывает достаточно для придания смеси способности к прямому прессованию. Кальция дифосфат двуводный в основном применяется в смеси с другими наполнителями для прямого прессования, такими как микрокристаллическая целлюлоза, лактоза, крахмал. Отмечено, что прямое прессование облегчается при добавлении гранулированных маннита и сорбита, смесей лактозы с мальтозой, крахмалом или микрокристаллической целлюлозой и др. Иногда добавление небольшого количества таких веществ как аэросил, кальция силикат (аэрогель), модифицированные крахмалы, делает смесь пригодной для прямого прессования. Так, оптимальное количество аэросила, добавляемого для улучшения текучести смеси, составляет 0,05—1,0%.
Широкое использование прямого прессования связано с повышением сыпучести негранулированных порошков, обеспечением качественного смешивания сухих ' лекарственных и вспомогательных веществ, уменьшением склонности таблеток к расслоению.
Питатели-дозаторы ротационных таблеточных машин могут обеспечить заполнение полости матриц порошками с плохой сыпучестью, но скорость заполнения будет ниже оптимальной. Показано, что при повышении сыпучести с 1,92 до 26 см/с, т. е. в диапазоне от порошка плохой сыпучести до материала высокой сыпучести, скорость заполнения матрицы, эквивалентная производительности РТМ, возрастала в 8,8 раз.
Прямое прессование в современных условиях — это прессование смеси, состоящей из лекарственных веществ, наполнителей и вспомогательных веществ. Существенным требованием к методу прямого прес сования является необходимость обеспечения одно родности содержания активного компонента. Особен но повышены требования к качеству многокомпонент- ; ,., ной смеси с небольшим содержанием" активных- в«- Ч/ А-> ществ. Чтобы добиться высокой однородности смеси, <■ Y-*"*"" необходимой для обеспечения лечебного эффекта каж- •-' дой.таблетки, стремятся к наиболее тонкому помолу лекарственного вещества. -—■.-.
Анализ состава лекарственных препаратов, опи- 6* 163
санных в ГФ XI, показал, что примерно 55 % из них содержат 50—100% лекарственного вещества от массы таблетки и могут быть смешаны с высокой степенью равномерности. В роли критического компонента (т. е. содержащегося в минимальном количестве) выступают скользящие и разрыхляющие вещества, которые должны быть высокодисперсными. Однако почти 40 % лекарственных препаратов, содержащих 10 % и менее лекарственного вещества от массы таблетки, требуют тщательного смешивания и высокой дисперсности частиц всех компонентов. Такие смеси обладают низкой текучестью.
Трудности прямого прессования связаны также с дефектами таблеток, такими как расслоение и трещины. При прямом прессовании чаще всего отделяются верхушка и низ таблетки в виде конусов. Одной из основных причин образования трещин и расслоений в таблетках является неоднородность их физических, •механических и реологических свойств из-за влияния внешнего и внутреннего трения и упругой деформации стенок матрицы. Внешнее трение ответственно за перенос массы порошка в радиальном направлении, что приводит к неравномерности плотности таблетки. При снятии давления прессования из-за упругой деформации стенок матрицы таблетка испытывает значительные напряжения сжатия, которые приводят к трещинам в ее ослабленных сечениях за счет неравномерной плотности таблетки из-за внешнего трения, ответственного за перенос массы порошка в радиальном направлении.
Оказывает влияние и трение о боковую поверхность матрицы во время выталкивания таблетки. Причем чаще всего расслоение наступает в момент, когда часть таблетки выходит из матрицы, так как в это время проявляется упругое последействие части таблетки при выталкивании из матрицы, в то время как часть ее, находящаяся в матрице, еще не имеет возможности свободно деформироваться. Установлено, что на неравномерность распределения сил прессования по диаметру таблетки оказывает влияние форма пуансонов. Плоские без фасок пуансоны способствуют получению самых прочных таблеток. Наименее прочные таблетки со сколами и расслоениями наблюдались при прессовании пуансонами с глубокой сферой. Плоские пуансоны с фаской и сферические с нормаль-
164
ной сферой занимают промежуточное положение. От меч^1ГТа1<жё, что челГШпге давление прессования. тем больше предпосылок для образования трещин у расслоений.
Таким образом, в настоящее время прямое прес сование применяется для ограниченного круга лекар ственных веществ. Поэтому гр_днул_и£ование остается основной технологической операцией при пбдТбТовкё"" "м*асс к таблетированию. " * ~* "
9.4.5. Технологические свойства
таблетируемых материалов.
Фракционный (гранулометрический) состав
С/7 Фракционный состав, или распределение частиц материала по крупности, оказывает определенное влияние на текучесть порошкообразных материалов, а следовательно, на ритмическую работу таблеточных машин, стабильность массы получаемых таблеток, точность дозировки лекарственного вещества, а также на качественные характеристики таблеток (внешний вид, распадаемость, прочность и др.). Значение фракционного состава помогает технологу подобрать оптимальные условия таблетирования.
Гранулированные порошки обычно имеют комковатый вид с относительно равноосной формой. Графическое распределение частиц по размерам является асимметричным со смещением в область более крупных частиц (2,5—1,0 мм), средний размер гранул составляет около 600—650 мкм. Гранулированные препараты, как правило, содержат и большой процент самых мелких частиц (менее 50 мкм). Объясняется это технологией гранулирования влажного материала, которая предусматривает повторное смешивание и опудривание. При смешивании и опудривании в смесь не только вносится большое количество мелких частиц, но она к тому же еще и измельчается.
Негранулированные порошки характеризуются полифракционным составом и сложной формой. Распределение частиц по размерам подчиняется закону нормального распределения: количество больших и самых мелких частиц мало, а основная их масса имеет приблизительно одинаковые размеры. Средний размер частиц негранулированных порошков составляет около 30—120 мкм.
165
Рис. 9.13. Устройство прибора для определения максимальной насыпной плотности порошкоз. Объяснение в тексте.
Наиболее простым и распространенным методом определения фракционного сое- / тава является анализ при \ помощи сит, при котором I исследуемый материал раз-/ деляют на фракции просеиЛ ванием через стандартный \ набор сит в течение 5 мин, а затем находят массу каждой фракции и ее процентное содержание.
Насыпная масса (плотность) — это масса единицы объема свободно насыпанного материала. Она зависит от гранулометрического состава, влажности, плотности укладки частиц в слое, их средней плотности и др. Определяют насыпную массу путем свободной засыпки порошка в определенный объем (например, мерный стакан) с последующим взвешиванием с точностью до 0,01 г.
Лекарственные порошки, как правило, легкие и сыпучие, погрешность измерения их насыпной массы выше, чем у более тяжелых сыпучих материалов. Поэтому представляет интерес измерение не минимальной, а максимальной насыпной массы. Ее определяют на приборе модели 545Р-АК-3, выпускаемом МНПО «Минмедбиоспецтехоборудование» (рис. 9.13). Взвешивают 5 г исследуемого порошка с точностью до 1 мг и засыпают его в измерительный цилиндр (1) вместимостью 25 мл. Устанавливают амплитуду колебаний цилиндра посредством регулировочного винта (4) и после отметки на шкале (2) фиксируют положение контргайкой (5). Далее включают прибор тумблером (3) и следят за отметкой уровня порошка в цилиндре. После того как уровень порошка уста-
166
навливается постоянным (обычно, иерез 5—10 мин), прибор выключают.
5 ■ 103
Максимальную насыпную плотность рассчитывают по формуле:
™» _ _т__
где р„ — объемная плотность, кг/м3; V — объем порошка в цилиндре после утряски, м3; т — масса сыпучего материала, кг.
Насыпная масса легко и точно определяется. Считают, что она влияет на текучесть и может ее характеризовать.
Текучесть (сыпучесть) является комплексным параметром, характеризующим способность материала высыпаться из емкости под силой собственной тяжести, образуя непрерывный устойчивый поток. На текучесть неуплотненных порошков влияют многочисленные факторы, характеризующие сыпучий материал: раз мер, форма и насыпная плотность частиц, коэффициенты межчастичного и внешнего трения, влажность. Перечисленные факторы связаны противоречивой зависимостью. Например, при увеличении размера частиц текучесть возрастает, но при одном и том же гранулометрическом составе она может быть неодинакова из-за разной величины удельной поверхности. Уменьшение насыпной плотности снижает текучесть, но при равной насыпной плотности вещества будут иметь разную текучесть, так как она зависит от формы частиц и коэффициентов межчастичного трения. Поэтому текучесть порошков лучше всего, определять прямым экспериментом, при котором определенное значение имеет метод оценки этого параметра, что подтверждается исследованиями ряда ученых.
Чаще всего текучесть определяют по скорости высыпания определенного количества материала (100— 30 г) из металлической или стеклянной воронки со строго заданными геометрическими параметрами и по углу естественного откоса.
Для определения текучести используется коническая воронка с углом конуса 60° и укороченным стеблем. Конец стебля воронки срезается под прямым углом на расстоянии 3 мм от вершины конуса. Диаметр выпускного отверстия изменяется от 1 до 25 мм.
167
Определение сравнительной текучести сыпучих материалов по скорости истечения из воронки требует определенного соотношения между диаметром стебля воронки и размерами частиц. Текучесть может быть точно определена при минимальном влиянии зависания порошка в тех случаях, когда отношение диаметра стебля воронки к максимальному размеру частиц достаточно велико (более 10—15).
Текучесть характеризуют коэффициентом текучести К, который определяют по формуле:
г
де
/ — среднее время истечения порошка, с;
г — радиус
выпускного отверстия воронки, мм; т
—
масса навески
сыпучего материала, г; п — показатель
степени,
равный 2,58.
Текучесть выражают как среднюю скорость истечения сыпучего материала и подсчитывают по формулам, см/с:
4у Am
Утек
=
л,
или
Утек
=
ji
,
>
па
t па
yt
где v — объем навески, см3; t — время истечения всей навески, с; d — диаметр стебля воронки, см; т — масса навески, г; у — насыпная масса, г/см3.
Для сравнительных определений текучести в одной серии экспериментов обычно пользуются измерением времени истечения навески материала или определяют массу материала, прошедшего в единицу времени.
Для определения текучести сыпучих материалов созданы стандартные приборы, например, прибор модели GDT фирмы «Эрвека» (ФРГ) или прибор модели ВП-12А (рис. 9.14) МНПО «Минмедбиоспецтех-оборудование».
При высыпании сыпучего материала из воронки на горизонтальную плоскость он рассыпается по плоскости, принимая вид конусообразной горки. Угол между образующей и основанием этой горки и называется углом естественного откоса.
Величина угла естественного откоса, выраженная в градусах, может быть определена при помощи угло-метра, вычислена по высоте горки и радиусу ее основания или измерена другими способами.
Угол естественного откоса изменяется в широких пределах от 25—35 °С для хорошо сыпучих до 60—
168
Рис. 9.14. Устройство прибора модели ВП-12А.
а — измерение сыпучести; б — измерение угла естественного откоса; 1 — воронка; 2 — крышка; 3 — тумблер; 4 — заслонка; 5 — электромагнит; 6 — якорь; 7 — амортизатор; 8 — тяга; 9 — шарнир; 10 — приемный стакан; 11 — горка; 12 — кольцо; 13 — угломер.
70° для менее сыпучих материалов. Отсюда чем меньше угол откоса, тем выше сыпучесть. Таким образом, угол естественного откоса является показателем, определяющим потенциальную текучесть сыпучего материала.
Влагосодержание — содержание влаги в материале. Оно оказывает большое влияние на текучесть и прессуемость порошков и гранулятов! Повышенная влажность прессуемого материала снижает его текучесть за счет образования массивных адсорбционных хуюев на частицах, повышает их адгезионные свойства как друг к другу, так и к соприкасающимся с ними поверхностям. Подсушивание материала в этом случае восстанавливает его текучесть. При недостаточном влагосодержании снижается сила сцепления между частицами прессуемого материала и уменьшается прочность таблеток. Поэтому таблетируемый материал должен иметь оптимальную влажность. Для большинства материалов влажность составляет 2— 5%, однако для некоторых материалов она колеблется в более широких пределах, например для амидо-
169
пирина от 0,5 до 1,5%; натрия салицилата от 8 до 10 %; корня ревеня от 18 до 22 %.
Влагосодержание таблетируемого материала можно определить высушиванием исследуемого образца (точная навеска от 1,0 до 3,0 г) в сушильном шкафу (при температуре 100—105°) до постоянной массы. Метод достаточно точен, однако в условиях заводского производства он неудобен вследствие своей длительности.
Для определения остаточной влажности в порошках и гранулятах наиболее приемлем метод высушивания инфракрасными лучами. Ряд зарубежных фирм («Кетт» и др.) выпускают инфракрасные влагомеры, которые в течение нескольких минут с достаточной точностью позволяют определить влажность материала.
В качестве источника инфракрасных лучей применена (ХНИХФИ, Ленинградский химико-фармацевтический институт) настольная лампа ИКЛ мощностью 550—600 Вт, помещенная в центре рефлектора. С помощью шарниров лампа устанавливается на расстоянии 5 см от стола. После включения лампы температура возле облучаемого объекта достигает 110— 115°С. Гранулят (точная навеска 2,0 г) помещают в алюминиевый бюкс высотой 1 см, разравнивают его легким постукиванием о стенки бюкса и устанавли-вают под рефлектор. Нагревание продолжают в течение 2 мин, после чего бюкс помещают в эксикатор на 2'мин и взвешивают.
Расчет влажности производят по формуле:
-Ь) ■ ЮО
/о ,
х л =
где X — содержание влаги в материале, %; (а — Ь) — потеря в массе, г; с — навеска, г.
Прессуемость порошков (гранулята) — это способность его частиц к взаимному притяжению и сцеплению под давлением. От степени проявления этой способности зависит пр_озщость и ^^то^чивость__гМлетки после снятия давления. Лекарственные вещества, входящие в состав таблеток, обладают различной индивидуальной прессуемостью. Знание этой величины позволяет прогнозировать типоразмеры таблеток (подбор соответствующих пресс-форм) и правильно выби-
170
рать величину давления прессования для их получения. Прессуемость может быть оценена по прочности таблеток на сжатие и выражена в абсолютных ве-личинах в м.Па или через коэффициент прессуемости, который выражается отношением массы таблетки к ее высоте. Для определения коэффициента прессуемости навеску материала, которая составляет 0,3 или 0,5 г, прессуют в матрице 9 или 11 мм соответственно на гидравлическом прессе при давлении 120 мПа. Полученную таблетку взвешивают на торсионных весах, высоту измеряют микрометром и коэффициент прессуемости вычисляют по формуле:
Кпр = /И/Л,
где т — масса таблетки, г; h — высота таблетки, см.
9.4.6. Прессование. Таблеточные машины
Прессование (собственно таблетирование) можно определить как процесс образования таблеток из гранулированного или порошкообразного материала под действием давления.
В современном фармацевтическом производстве таблетирование осуществляется на специальных прессах— роторных таблеточных машинах (РТМ). В мировой практике созданы высокопроизводительные таблеточные прессы, оснащенные приборами для автоматического контроля массы таблеток, давления прессования. Имеются модели машин, выпускающие в час более полумиллиона таблеток. Химико-фармацевтическая промышленность СССР оснащена отечественными высокопроизводительными РТМ, основными разработчиками и изготовителями которых являются ЛНПО «Прогресс» и МНПО «Минмедбиоспецтехобо-рудование».
Технологический цикл таблетирования на РТМ складывается из ряда последовательных операций: дозирование материала, прессование (образование таблетки), ее выталкивание и сбрасывание. Все перечисленные операции осуществляются автоматически одна за другой при помощи соответствующих исполнительных механизмов.
В таблеточных машинах используется объемный метод дозирования. Загрузочное устройство РТМ со-
1
71
из загрузочной воронки — бункера и питателя-дозатора, укрепленных неподвижно на станине машины. Бункер обеспечивает непрерывность потока таблетируемого материала. Для равномерной подачи плохо сыпучих материалов из бункера в питатель первые могут быть снабжены мешалками, шнеками, ворошителями. Питатель-дозатор предназначен для формирования, направления и дозированной подачи таблеточной смеси в зону прессования.
Конструкция питателя должна обеспечивать работу РТМ с высокой производительностью, точность и стабильность массы таблеток, таблетирование материалов с различными свойствами и характеристиками, заполнение матричных отверстий от минимальных до максимальных диаметров, соответствующих размерам таблеток согласно требованиям фармакопеи.
В отечественных РТМ используются питатели-дозаторы: лопастные 2- и 3-камерные и рамочный. Наиболее широко применяются 2-камерные питатели. Высокопроизводительные автоматы, имеющие производительность 300 тыс. таблеток в час и более, оснащены 3-камерными питателями-дозаторами, обладающими наилучшими характеристиками по заполнению матриц РТМ. Стабильность массы таблеток при работе 3-камерного питателя-дозатора объясняется его конструкцией (рис. 9.15), в которой по сравнению с 2-камерными имеется верхняя камера с лопастями загрузочного ворошителя (1), расположенная над двумя нижними камерами с заполняющим (2) и дозирующим (3) ворошителями. Она служит для передачи таблеточной смеси из бункера в камеру заполняющего ворошителя (2) и регулировки его поступления в питатель в зависимости от изменения расхода материала.
Лопастные дозирующие устройства, к которым относятся 2- и 3-камерные питатели, несмотря на преимущества, имеют большую металлоемкость, оснащены индивидуальным приводом, что ведет к повышенному расходу энергозатрат, недостаточно удобны в эксплуатации при смене лекарственных веществ.
Наиболее простым и надежным в эксплуатации является рамочный питатель, но его применение эффективно лишь при прессовании препаратов хорошей и средней сыпучести при скорости вращения ротора
172
/
Рис. 9.15. Устройство трехкамерного питателя-дозатора. 1 — загрузочный ворошитель; 2 — заполняющий ворошитель; 3 — дозирующий ворошитель.
д
и
Рис. 9.16. Сборные пуансоны к РТМ:
1 — нижний; 2 — верхний. Цельные пуансоны 3 и 4 с плоской поверхностью; 5 и б — со сферической поверхностью.
173
Рис. 9.17. РТМ-41.
до 30 м/мин. В настоящее время создана конструкция рамочного питателя с вибрационной сеткой. Величина сетки выбирается в зависимости от формы и размера гранул, сыпучести таблеточной смеси. Изменяя амплитуду и частоту колебаний вибросетки, можно добиться высокой точности массы таблетки на всех режимах работы РТМ при сохранении всех положительных эксплуатационных характеристик рамочного питателя.
Прессование на таблеточных машинах осуществ ляется пресс-инструментом, состоящим из матрицы и двух пуансонов. "
Матрица представляет собой стальную деталь, как правило, цилиндрической формы со сквозным цилиндрическим отверстием диаметром от 3 до 25 мм. Матрицы вставляются в соответствующие отверстия
174
ротора, вращающегося на вертикальном валу. Частота вращения ротора современных РТМ находится в пределах от 15 до 75 мин~', число матриц достигает 41—75. •
Пуансоны (верхний и нижний) — это цилиндрические стержни (поршни) из хромированной стали, которые входят в отверстия матрицы сверху и снизу и обеспечивают прессование таблетки под действием давления. Прессующие поверхности пуансонов могут быть плоскими или вогнутыми (разного радиуса или кривизны), гладкими или с поперечными бороздками (насечками) или с выгравированной надписью. Пуансоны различаются по способу их соединения с толкателем: они могут быть цельные или сборные (рис. 9.16). Пуансон цельный представляет собой одно целое с толкателем. Он более прост в изготовлении, но более дорог в эксплуатации, так как пуансон изнашивается быстрее толкателя, а при его замене меняется и толкатель. Способы соединения пуансона с толкателем в сборном пресс-инструменте в машинах разных фирм различны. Общий вид РТМ-41 представлен на рис. 9.17, а процесс таблетирования можно рассмотреть на циклограмме — развертке машины (рис. 9.18).
Из бункера (1) порошок самотеком поступает в питатель-дозатор (3), неподвижно укрепленный на станине машины. Заполняющий ворошитель лопастями (4) осуществляет подачу порошка в матрицу (6), при этом пуансоны (8), укрепленные в толкателях (9), опускаются по неподвижному копиру (10) и регулируемому копиру (15) на полную глубину заполнения матриц. При дальнейшем вращении ротора толкатель следует по горизонтальному участку копира к дозирующему механизму, который состоит из копира (16) и шарнирно связанного с ним регулируемого дозатора (17). Копир-дозатор перемещает толкатель с пуансоном вверх, поднимая порошок в матрице на высоту, соответствующую по объему заданной массе таблетки. В это время лопасти (20) дозирующего ворошителя срезают излишек дозы и передают ее обратно в зон;, действия заполняющего ворошителя. Поскольку лодасти находятся на 1,0—1,5 мм выше дна корпуса питателя, то в дозировании участвует и кромка корпуса (21) питателя, отстоящая от зеркала стола на 0,1 мм. Окончательно отсекает дозу нож (22) с
175
О
а.
фторопластовой пластиной, плотно прижатой к столу.
Во время дальнейшего переноса дозы нижний толкатель попадает на горизонтальный копир (18), верхний—проходит под копиром-отбойником (23), опускающим верхние пуансоны до захода их в матрицу. Ролики (19) осуществляют предварительное прессование (подпрессовку), а ролики давления (11)— собственно прессование. При этом на РТМ порошок выдерживается под давлением за счет наличия плоского торца на головке толкателя, смещения- на 3— 4 мм осей верхнего и нижнего роликов давления, введения специальных копиров (2), размещенных на уровне ролика давления в момент прессования. Выталкивание таблетки из плоскости матрицы на поверхность зеркала стола осуществляется механизмом выталкивания, состоящим из трех элементов. Ролик выталкивания (12) отрывает таблетку от стенки матрицы. Копир выталкивания (13) доводит таблетку до верхнего уровня, а выталкиватель (14) регулируется таким образом, чтобы таблетка выводилась из матрицы на поверхность стола, затем ротором таблетка (7) подводится к ножу (5), который направляет ее на лоток и далее в приемную тару.
В двухпоточной машине модели РТМ за один оборот ротора дважды повторяется описанный выше технологический цикл.
Наиболее широко в таблеточных цехах отечественных химико-фармацевтических заводов применяется роторная таблеточная машина РТМ-41М2В. Машина имеет 41 пару пресс-инструмента при максимальной глубине заполнения матрицы 18 мм. Диаметр прессуемых таблеток 4—20 мм. Максимальное усилие прессования 100 кН. Производительность достигает 209 тыс. штук в час.
ЛНПО «Прогресс» разработало, а МНПО «Мин-медбиоспецтехоборудование» освоило серийное производство механизмов типа РТМ-3028. Машина имеет устройство вакуумной подачи порошков в матрицу. В момент загрузки материала через отверстие, соединенное с вакуумной линией, из полости матрицы отсасывается воздух. При этом порошок поступает в матрицу под действием вакуума, что обеспечивает высокую скорость заполнения и одновременно повышает точность дозирования. РТМ-3028 рекомендована для прямого прессования. Однако предусмотренная
177
конструкция вакуумного заполнения оказалась недостаточно надежной, так как быстро засорялась порошком.
В настоящее время выпускаются роторные пресс-автоматы модели РТМ-41МЗ. Это 3-е поколение выпускаемых МЗТО роторных таблеточных прессов. Пресс-автомат оснащен вибрационным питателем, который может за счет регулировки амплитуды и частоты колебаний вибрационной, заполняющей части питателя разрывать силы сцепления между частицами порошка, благодаря чему значительно повышается его подвижность и как бы компенсируется недостаток сыпучести. Производительность автоматов РТМ-41МЗ, оснащенных вибрационными питателями, повышается в 1,5—1,8 раза по сравнению с РТМ-41М2В. Однако исследователи считают, что и в этом случае грануляция необходима, но с небольшим снижением требований к однородности гранулята.
Современные таблеточные машины взрывобезо-пасны.
Таблеточные машины комплектуются установкой для сбора потерь таблеточной массы при изготовлении и фасовке, оборудованы приборами для автоматического контроля таблеток на металлические включения, которые не только обнаруживают, но и извлекают из потока таблетки, имеющие металлические включения. Минимальные размеры обнаруживаемых металлических включений 0,5 мм при средней скорости непрерывного потока таблеток 100 тыс. штук в час.
Для автоматического контроля массы таблеток при производстве их на машинах типа РТМ-41 используется устройство, состоящее из блока отбора таблеток, преобразователя, блока контроля и сигнализации. Сигнал с преобразователя поступает в блок контроля и сигнализации, где он сравнивается с заранее заданным сигналом, соответствующим определенной массе таблетки. В случае отклонения массы таблетки от номинала загорается сигнальная лампа. Производительность устройства не менее 2000 операций в час при массе контролируемой таблетки от 0,15 до 0,75 г.
Для удаления с поверхности таблеток, выходящих из пресса, пылевых фракций применяются обеспыле-ватели. Таблетки проходят через вращающийся пер-
178
форированный барабан и очищаются от пыли (заусениц и неровностей), которая отсасывается из обеспы-левателя пылесосом.