
- •5. Содержание лекционных занятий по темам с указанием используемых инновационных образовательных технологий.
- •6.Содержание практических занятий
- •8. Самостоятельная работа бакалавра
- •Тема 1: Полупроводниковые приборы и устройства.
- •1.Полупроводник, различные типы проводимости (р, n- проводимость); р-n переход.
- •1.1Кремневые диоды открываются при напряжении 0,4-0,8в, а германиевые при 0,2-0,4в.
- •1.2Обратный ток в 1000 раз меньше прямого тока.
- •1.3У словные обозначения диода: треугольник –анод, полочка- катод
- •1.4Условные обозначения стабилитрона
- •Тиристорами называют пп устройство с 2-я устойчивыми состояниями. Тиристор с остоитобычно из 3-х или более последовательно включенных р-n –переходов . Например:
- •1.5Конструкция, обозначения электродов , технические харакеристики
- •Тема 2(4ч): Выпрямители:
- •1.5.2Мостовая схема 2-х полупериодного выпрямителя представлена на рисунке 7
- •1.6Выпрямители в 3-х фазных цепях.( однополупериодный, 2-хполупериодный).
- •1.6.1Трехфазные выпрямители
- •Тема 5(2ч): : Инверторы и конверторы
- •Автономные иинверторы
- •Тема 6(4ч): : Транзисторы
- •Схемы включения транзисторов
- •Частотная характеристика
- •7. Усилители постоянного тока
- •Тема5 (2ч):Усилители
- •Тема 6(2ч): Операционные усилители.
- •1.6.3.1.1.1.1Таблица1
- •2.1.25.1.1.1Для интегрирующего усилителя (рис.8) справедливы соотношения
- •Тема7(2ч): Управляемые источники ( на cpc)
- •Тема8(2ч): Импульсные устройства.
- •10.25. Логические автоматы с памятью
- •Тема9(2ч): Логические устройства.
- •Тема12(2ч): Электронные генераторы
- •Список вопросов по курсу « Общая Электротехника»
- •Список вопросов по дисциплине «Промышленная электроника».
- •3 Приложение
- •Список понятий которыми дожен владеть студент в начале изучения курса «Элекротехника и Электрника»
- •3.11.Задача анализа переходных процессов;
- •3.23.Понятие о коммутации;
- •Первый закон коммутации :
- •Второй закон коммутации:
- •Общая характеристика методов анализа переходных процессов в линейных электрических цепях .
- •Определение классического метода расчета переходных процессов.
- •3.2.1Пример 1. Переходный процесс в цепи при подключении к источнику эдс цепи c последовательно соединенными r и l
- •3.2.2Рассмотрим цепь на рис.1
- •4Составим уравнение цепи. По второму закону Кирхгофа
- •Закорачивание цепи катушки индуктивности с током .
- •Размыкание цепи катушки с индуктивностью
- •Переходные процессы в цепи постоянного тока с одним емкостным элементом
- •6Решение уравнения (п4-1) запишем в виде суммы двух составляющих:
- •Литература
3.11.Задача анализа переходных процессов;
2.Возникновение переходных процессов.
3.23.Понятие о коммутации;
4.Анализ переходных процессов в простых цепях.
В установившемся режиме токи и напряжения всех ветвей электрической цепи изменяются по периодическому закону или в частном случае сохраняют неизменные значения. Всякое изменение как топологии цепи, так и параметров входящих в нее элементов (подключение или отключение отдельных ветвей, изменение параметров пассивных элементов или параметров источников энергии) нарушает периодический характер изменения токов и напряжений ветвей, т. е. приводит к тому, что режим работы цепи становится неустановившимся. Любое скачкообразное изменение в цепи, нарушающее установившийся режим, будем называть коммутацией. Если внешнее воздействие на цепь и после коммутации имеет периодический характер, то с течением времени (теоретически через бесконечно большой промежуток времени) цепь перейдет в новый установившийся режим. Неустановившиеся процессы, которые имеют место в цепи при переходе от одного установившегося режима к другому, называются переходными.
При анализе переходных процессов в цепи, как правило, можно пренебречь длительностью процесса коммутации, т. е. считать, что коммутация осуществляется практически мгновенно. Начало отсчета времени переходного процесса обычно совмещают с моментом коммутации, причем через t = 0_ обозначают момент времени, непосредственно предшевствующий коммутации, а через t= 0+, момент времени, следующий непосредственно за коммутацией (начальный момент времени после коммутации).
Переходные процессы, связанные с изменением топологии цепи или различными коммутациями пассивных элементов, присущи в основном устройствам производства, передачи и преобразования электрической энергии.
Законы коммутации
Переход реальной электрической цепи от одного установившегося режима к другому не может происходить мгновенно, скачком. Это объясняется тем, что каждому установившемуся состоянию соответствует определенное значение энергии, запасенной в электрическом и магнитном полях. Скачкообразный переход от одного установившегося режима к другому потребовал бы скачкообразного изменения энергии, что возможно только если источники энергии обладают бесконечно большой мощностью, т. е. отдаваемые ими токи или напряжения могут принимать бесконечно большие значения. В связи с тем что любой реальный источник энергии может отдавать только конечную мощность, суммарная энергия запасенная в цепи может изменятся только плавно, т. е. представляет собой непрерывную функцию времени.
Следовательно, возникновение переходных процессов при переходе электрической цепи от одного установившегося состояния к другому связано с тем, что энергия, запасенная реактивными элементами цепи, не может изменяться скачком, а изменяется только плавно.
Отсюда следует, что в резистивной цепи (в цепи, не содержащей реактивных элементов) процесс перехода от одного установившегося состояния к другому должен происходить мгновенно. Таким образом, переходные процессы в безреактивных цепях отсутствуют. Очевидно, что такие цепи можно рассматривать только в качестве очень упрощенных моделей реальных цепей, поэтому в любой реальной цепи переход от одного установившегося режима к другому всегда сопровождается переходными процессами.
Как известно, энергия, запасенная реактивными элементами цепи, определяется токами индуктивностей и напряжениями емкостей. Исходя из того, что запасенная энергия является непрерывной функцией времени, приходим к заключению о непрерывности во времени токов индуктивностей и напряжений емкостей. Этот вывод формулируется в виде законов коммутации.