
- •Тема 1.1 основні поняття в колах постійного струму. Закон ома та правила кірхгофа
- •1.1.2. Закон ома
- •1.1.3 Правила кірхгофа
- •1.2.2 Розрахунок розгалуджених кіл методом двох вузлів
- •1.2.3 Розрахунок розгалуджених кіл методом правил кірхгофа
- •Тема 1.3 розрахунок розгалуджених кіл методом накладання та контурних струмів.
- •1.3.2 Розрахунок розгалуджених кіл методом контурних струмів
- •1.3.3 Баланс потужностей
- •Тема 2.1 основні поняття і параметри в колах синусоїдного струму. Подання синусоїдних величин комплексними числами
- •Зображення синусоїдних величин векторами на площині
- •2.1.3 Загальні відомості про комплексні числа
- •Тема 2.2 нерозгалуджене коло змінного струму
- •2.2.2 Індуктивність в колі синусоїдного струму
- •2.2.3 Ємність у колі синусоїдної напруги
- •2.2.4 Котушка індуктивності у колі синусоїдної напуги
- •2.2.5 Послідовне з’єднаня r, c
- •2.2.6 Послідовне зєднання r, l, с
- •Тема 2.3 розгалудене коло зміного струму. Потужність в колі змінного струму
- •2.3.2 Закон ома та правила кірхгофа у комплексній формі
- •2.3.3 Розрахунок кіл змінного струму комплексним методом
- •Потужність в колі змінного струму
- •Тема 2.4 електричне коло з періодичними несинусоїдні струмами
- •2.4.1 Періодичні несинусоїдні струми
- •2.4.2 Електричні фільтри
- •2.4.1 Періодичні несинусоїдні струми
- •2.4.2 Електричні фільтри
- •Тема 2.5 трифазний струм
- •2.5.2 З'єднання трифазної системи зіркою
- •2.5.3 З'єднання трифазної системи трикутником
- •2.5.4 Потужність у трифазному колі
- •Тема 3.1 магнітне поле. Магнітні властивості речовини
- •Феромагнетики та їх властивості
- •3.1.3. Магнітні матеріали I їх застосування
- •Тема 3.2 магнітні кола
- •3.2.2 Аналогія між магнітним та електричним колами
- •3.2.3 Методи розрахунку магнітного кола
- •Тема 3.3 нелінійні кола
- •3.3.2 Електричні кола змінного струму з нелінійним резистивним елементом
- •3.3.2 Електричні кола змінного струму з нелінійною індуктивністю. Дроселі. Магнітні прискорювачі.
- •Тема 4.1 перехідні роцеси
- •4.1.2 Закони комутації
- •4.1.3 Підключення rl-кола до джерела постійної напруги
- •Підключення rс-кола до джерела постійної напруги
- •Тема 4.2 кола з розподіленими параметрами
- •Параметри однорідної лінії
- •Рівняння однорідної лінії
- •4.2.1 Параметри однорідної лінії
- •4.2.2. Рівняня однорідної лінії. Види ліній
- •Тема 5.1 напівпровідникові діоди
- •5.1.2 Власна й домішкова провідність напівпровідників
- •5.1.3 Призначення та класифікація електронних приладів
- •5.1.4 Напівпровідникові діоди
- •5.1.5 Кремнієвий стабілітрон та варикап
- •Тема 5.2 напівпровідникові транзистори
- •Польові танзистори
- •5.2.2.1 Польовий транзистор з керованим переходом
- •5.2.2.2 Польовий транзистор з ізольованим затвором
- •5.2.3 Порівняння польових та біполярних транзисторів
- •Тема 5.3 різновиди напівпровідникових приладів
- •5.3.2 Виромінювальні діоди
- •5.3. Напівпровідникові лазери
- •5.3.4 Фотоелектричні прилади
- •5.3.5 Терморезистори
- •Тема 5.4 технічні основи мікроелектроніки. Інтегральні мікросхеми
- •5.4.2 Особливості інтегральних схем
- •5.4.3 Класифікація інтегральних мікросхем
- •Про автора
- •Теорія електричних та магнітних кіл
- •18000, М. Черкаси, вул. Смілянська, 2
5.4.2 Особливості інтегральних схем
Головна особливість ІМС як електронного приладу полягає в тому, що вона самостійно виконує закінчену функцію, тоді як елементарні (дискретні) електроні прилади виконують аналогічну функцію тільки в ансамблі з іншими компонентами.
Другою важливою особливістю ІМС є те, що підвищення функціональної складності цього приладу порівняно з дискретними компонентами не супроводжується погіршенням якого0небуть з основних показників (надійності, вартості). Всі ці показники поліпшуються.
Третя особливість ІМС полягає в широкому використанні структур активних елементів для формування пасивних. Принцип протилежний тому, який притаманний дискретній транзисторній техніці, в якій активні елементи особливо транзистори , є найдорожчими і тому оптимізація схем за інших умов досягається зменшенням кількості активних компонентів. В ІМС задається вартість е елемента, акри сала, тому доцільно розміщувати на кристалі якомога більше елементів з мінімальною площею. Мінімальну площу мають активні елементи (транзистори, діоди), а максимальну – пасивні (резистори, конденсатори).
Створення функціональних вузлів на базі ІМС не потребують порівняно з традиційними методами виробництва апаратури на дискретних компонентах великої кількості технологічних операцій (особливо таких ненадійних і трудомістких, як складання і монтаж елементів).Крім того низько надійні з'єднання компонентів вилучаються і замінюються високо надійними з'єднаннями елементів методом металізації.
В ІМС формують деякі типи елементів, які не мають дискретних аналогів (багатоемітерні транзистори, прилади із зарядовим зв’язком). З їх використанням відкриваються додаткові схемотехнічні можливості для побудови мікроелектронної апаратури з поліпшенням показників надійності, габаритних розмірів, швидкодії.
5.4.3 Класифікація інтегральних мікросхем
ІМС поділяють на різні типи за принципами будови та технологією виготовлення, ступенем інтеграції, функціональним призначенням.
За принципами будови та технологією виготовлення ІМС поділяють на такі основні типи напівпровідникові, плівкові, гібридні і суміщені.
Напівпровідниковою називають ІМС, яка має один кристал напівпровідника, в об’ємі і на поверхні якого спеціальними технологічними методами сформовані всі елементи, між елементні з'єднання і контактні площинки. Розрізняють біполярні та МДН-інтегральні схеми.
Усі елементи напівпровідникової ІМС зв’язані між собою паразитними емностями та провідностями, що зумовлено щільним упакуванням елементів і недосконалістю методів ізоляції. Перевагами напівпровідникових ІМС є вища надійність (менше контактних з'єднань), більша механічна міцність, зумовлена меншими розмірами елементів, менша собівартість завдяки ефективному використанню переваг групових технологій.
Напівпровідникові ІМС з біполярними транзисторами вирізняються високою швидкодією, а з МДН-транзисторами – високою щільністю упакування, мінімальною потужністю споживання і низькою вартістю виготовлення.
Виробництво напівпровідникових ІМС потребує особливих приміщень, складного обладнання, строгого виконання технологічних операцій. Тому виготовлення таких ІМС стає економічно доцільним за умови масового виробництва.
Плівкова ІМС – це мікросхема, елементи та між елементні з'єднання якої виготовлено за допомогою плівок необхідної форми з різними електрофізичними властивостями на поверхні діелектричної підкладки. Залежно від способу формування плівок і відповідно їхніх товщини розрізняють тонко плівкові ІМС (1…2 мкм) та товсто плівкові ІМС (10…20 мкм). Плівкова технологія не дозволяє одержувати активні елементи із задовільними параметрами. Суто плівкові схеми є пасивними ІМС (резистивні подільники напруги, набір резисторів та конденсаторів, резистивно-ємнісні схеми. Плівкові інтегральні елементи найчастіше використовуються разом з мініатюрними дискретними електрорадіоелементами – компонентами.
Гібридною ІМС (ГІС) називають ІМС, яка має діелектричну основу, пасивні елементи на її поверхні формують у вигляді одношарових або багатошарових плівкових структур, з’єднаних нерозривними плівковими провідниками, а активні елементи розміщені на основі у вигляді дискретних навісних деталей.
Гібридні ІМС поступаються напівпровідниковим за надійністю, щільністю упакування та собівартістю, але мають в ряді випадків особливі схемотехнічні переваги завдяки широкі номенклатурі навісних компонентів.
Гібридна технологія дуже гнучка. Вона дозволяє порівняно швидко створювати електронні пристрої, які виконують досить складні функції. Комплект обладнання для виготовлення ГІС дешевші, а сам технологічний процес набагато простіший, тому освоєння гібридної технології посильне для будь-якого радіоелектронного підприємства.
Перевагою гібридної технології є більший відсоток виходу придатних ІМС (60…80 % порівняно з 5…30 % для напівпровідникових). Завдяки мали м паразитним ємностям та надійній ізоляції між елементами та компонентами ГІС має кращі електричні властивості.
У суміщених ІМС активні елементи виконано в поверхневому шарі напівпровідникового кристала (як у напівпровідниковій ІМС), а пасивні елементи нанесено за допомогою плівок на попередньо ізольовану поверхню того самого кристала. Таку технологію використовують для створення ІМС високими номіналами і високою стабільністю опорів та ємностей, що легше забезпечити плівковими елементами, ніж напівпровідниковими.
За характером виконуваних функцій ІМС поділяють на аналогові та цифрові.
Аналогові ІМС виконують функції перетворення та обробки електричних сигналів, які змінюються за законом неперервної функції. Їх застосовують як підсилювачі, генератори гармонічних сигналів, детектори, стабілізатори напруги, фільтри
Цифрові ІСМ призначені для обробки та перетворення електричних сигналів, що змінюються за законом дискретної функції. Активні елементи такої ІМС праюють у ключовому режимі і забезпечують два стани схем: “відкрито” і “закрито” (насичення та відсікання).
Кількісно рівень розвитку інтегральної техніки та складності ІМС визначають показником, який називається ступенем інтеграції (К). Він враховує сумарну кількість елементів і компонентів N, які знаходяться в ІМС і визначається за формулою:
. (5.3)
При цьому ІМС з кількістю елементів близько 10 – це мікросхеми першого ступеня інтеграції, з кількістю 11…100 – другого ступеня, з кількістю 101…1000 – третього ступеня, 1001…10000, 10001…100000 – це мікросхеми четвертого і п'ятого ступеня інтеграції відповідно.
Широко вживають також терміни: мала ІМС (МІС), середня ІМС (СІС), велика ІМС (ВІС), і надвелика ІМС (НВІС).
Мала ІМС має до 100 елементів включно. До СІС належать цифрові ІМС з кількістю елементів 101…1000 включно і аналогові ІМС з кількістю 101…500 включно.
Велика ІМС має 1000…10000 елементів включно: для ЦІС з регулярною структурою побудови, 501…50000 елементів включно для ЦІС з нерегулярною структурою побудови та 501…1000 включно для аналогових ІМС.
До ЦІС з регулярною структурою побудови належать схеми запам'ятовувачів та схеми на основі базових матричних кристалів, а до ЦІС з нерегулярною структурою побудови – схеми обчислювачів.
До НВІС належать: ЦІС з регулярною структурою з кількістю елементів понад 100000, ЦІС з нерегулярною структурою побудови з кількістю елементів понад 50000 та аналогові ІМС із кількістю елементів понад 10000.
Більшість аналогових ІМС належать до МІС та СІС, але виготовляють гібридні БІС, а також надвеликі ГІС.
Досягнення мініатюризації ІМС оцінюють щільністю упакування. Цей показник визначають відношенням сумарної кількості елементі ІМС та елементів, які є у складі компонентів, до об’єму ІМС.
Питання для самоперевірки знань
Мікроелектроніка
Завдання мікроелектроніки
ІМС
Елемент ІМС
Компонент ІМС
Напівпровідникова пластина
Кристал ІМС
Контактна площинка
Корпус ІМС
Мікроскладання
Мікроблок
Тип ІМС
Типономінал ІМС
Серія ІМС
Група типів ІМС
Головна особливість ІМС
Дискретні елементи
Особливості ІМС
Напівпровідникова ІМС
Плівкова ІМС
Гібридна ІМС
Суміщена ІМС
Аналогова ІМС
Цифрова ІМС
Ступінь інтеграції
Мала ІМС
Середня ІМС
Велика ІМС
Надвелика ІМС
Теми рефератів
ІМС та мікропроцесори
Логічні елементи
Основні технологічні процеси виготовлення ІМС
Питання для самостійного опрацювання
Система умовних позначень і корпуси ІМС
Прилади із зарядовим зв'язком
РЕКОМЕНДОВАНА ЛІТЕРАТУРА
1. Титаренко М.В. Електротехніка / М.В. Титаренко – К.: Кондор, 2004. – 240 с.
2. Л.Д. Васильєва, Б.І. Медведенко, Ю.І. Якименко Напівпровідникові прилади / Л.Д. Васильєва – К.: – Політехніка, 2003. – 388 с.
3. Малинівський С.М. Загальна електротехніка / С.М. Малинівський – Л.: Видавництво національного університету “Львівська політехніка”, 2001. – 596 с.
3. Шихин А.Я. Электротехника / А.Я. Шихин – М.: Высшая школа, 1989. -336 с.
4. Попов B.C. Теоретическая электротехника / В.С. Попов – М.: Энергия, 1971. – 608с.
5. Атабеков Г.И. Основы теории цепей / Г.И. Атабеков – М.: Энергия, 1990. – 689 с.
6. Зернов Н.В.Теория радиотехнических цепей / Н.В. Зернов – М.: Наука, 1985. –507 с.