
- •Тема 1.1 основні поняття в колах постійного струму. Закон ома та правила кірхгофа
- •1.1.2. Закон ома
- •1.1.3 Правила кірхгофа
- •1.2.2 Розрахунок розгалуджених кіл методом двох вузлів
- •1.2.3 Розрахунок розгалуджених кіл методом правил кірхгофа
- •Тема 1.3 розрахунок розгалуджених кіл методом накладання та контурних струмів.
- •1.3.2 Розрахунок розгалуджених кіл методом контурних струмів
- •1.3.3 Баланс потужностей
- •Тема 2.1 основні поняття і параметри в колах синусоїдного струму. Подання синусоїдних величин комплексними числами
- •Зображення синусоїдних величин векторами на площині
- •2.1.3 Загальні відомості про комплексні числа
- •Тема 2.2 нерозгалуджене коло змінного струму
- •2.2.2 Індуктивність в колі синусоїдного струму
- •2.2.3 Ємність у колі синусоїдної напруги
- •2.2.4 Котушка індуктивності у колі синусоїдної напуги
- •2.2.5 Послідовне з’єднаня r, c
- •2.2.6 Послідовне зєднання r, l, с
- •Тема 2.3 розгалудене коло зміного струму. Потужність в колі змінного струму
- •2.3.2 Закон ома та правила кірхгофа у комплексній формі
- •2.3.3 Розрахунок кіл змінного струму комплексним методом
- •Потужність в колі змінного струму
- •Тема 2.4 електричне коло з періодичними несинусоїдні струмами
- •2.4.1 Періодичні несинусоїдні струми
- •2.4.2 Електричні фільтри
- •2.4.1 Періодичні несинусоїдні струми
- •2.4.2 Електричні фільтри
- •Тема 2.5 трифазний струм
- •2.5.2 З'єднання трифазної системи зіркою
- •2.5.3 З'єднання трифазної системи трикутником
- •2.5.4 Потужність у трифазному колі
- •Тема 3.1 магнітне поле. Магнітні властивості речовини
- •Феромагнетики та їх властивості
- •3.1.3. Магнітні матеріали I їх застосування
- •Тема 3.2 магнітні кола
- •3.2.2 Аналогія між магнітним та електричним колами
- •3.2.3 Методи розрахунку магнітного кола
- •Тема 3.3 нелінійні кола
- •3.3.2 Електричні кола змінного струму з нелінійним резистивним елементом
- •3.3.2 Електричні кола змінного струму з нелінійною індуктивністю. Дроселі. Магнітні прискорювачі.
- •Тема 4.1 перехідні роцеси
- •4.1.2 Закони комутації
- •4.1.3 Підключення rl-кола до джерела постійної напруги
- •Підключення rс-кола до джерела постійної напруги
- •Тема 4.2 кола з розподіленими параметрами
- •Параметри однорідної лінії
- •Рівняння однорідної лінії
- •4.2.1 Параметри однорідної лінії
- •4.2.2. Рівняня однорідної лінії. Види ліній
- •Тема 5.1 напівпровідникові діоди
- •5.1.2 Власна й домішкова провідність напівпровідників
- •5.1.3 Призначення та класифікація електронних приладів
- •5.1.4 Напівпровідникові діоди
- •5.1.5 Кремнієвий стабілітрон та варикап
- •Тема 5.2 напівпровідникові транзистори
- •Польові танзистори
- •5.2.2.1 Польовий транзистор з керованим переходом
- •5.2.2.2 Польовий транзистор з ізольованим затвором
- •5.2.3 Порівняння польових та біполярних транзисторів
- •Тема 5.3 різновиди напівпровідникових приладів
- •5.3.2 Виромінювальні діоди
- •5.3. Напівпровідникові лазери
- •5.3.4 Фотоелектричні прилади
- •5.3.5 Терморезистори
- •Тема 5.4 технічні основи мікроелектроніки. Інтегральні мікросхеми
- •5.4.2 Особливості інтегральних схем
- •5.4.3 Класифікація інтегральних мікросхем
- •Про автора
- •Теорія електричних та магнітних кіл
- •18000, М. Черкаси, вул. Смілянська, 2
Тема 5.1 напівпровідникові діоди
План лекції
5.1.1 Будова і електричні властивості напівпровідників
5.1.2 Власна і домішкова провідність напівпровідників
5.1.3 Призначення та класифікація електронних приладів
5.1.4 Напівпровідникові діоди
5.1.5 Кремнієві стабілітрони і варикапи
5.1.1 БУДОВА Й ЕЛЕКТРИЧНІ ВЛАСТИВОСТІ НАПІВПРОВІДНИКІВ
До напівпровідників належать: деякі метали (сіре олово), оксиди металів, сульфіди (сполуки сірки), селеніди (сполуки селену), телуриди, деякі сплави тощо. Значна частина напівпровідників має кристалічну будову.
Рис. 5.1 Будова германія
Усі напівпровідники поділяють на три великі групи.
1. Атомні напівпровідники (мають атомну кристалічну решітку) - бор, кремній, фосфор, сірка, германій, селен, цирконій, сіре олово та ін. Ці елементи належать до IV, V, VI груп періодичної системи елементів Менделєєва і становлять компактну групу, вліво від якої-розміщені елементи з вираженими металевими властивостями, вправо - з металоїдними;
2. напівпровідники з іонною кристалічною решіткою, в якій атоми зв'язані кулонівськими силами, наприклад CdS, РbS;
3. напівпровідникові сполуки з валентними зв'язками, в яких атоми утворюють кристали типу однієї гігантської молекули (карбід кремнію, антимонід індію, арсенід галію та ін.).
Типовими .напівпровідниками є германій (Ge), кремній (Sі). Розглянемо докладніше германій (рис. 5.1). Він належить до IV періоду і IV групи періодичної системи елементів. В електронній оболонці його є 32 електрони. Електрони внутрішніх насичених шарів не беруть участі в хімічних реакціях. Чотири електрони в зовнішньому шарі N зв'язані з ядром атома слабко (валентні електрони) і можуть вступати в хімічні зв'язки з іншими атомами. У найпростішому випадку такий зв'язок здійснюється двома валентними електронами, які належать обом атомам, що взаємодіють. Зв'язки можуть утворюватися і двома або трьома парами електронів. Такий, хімічний парноелектронний зв'язок атомів називається ковалентним. Коли з окремих атомів германію утворюється кристалічна решітка, то в процесі зближення атомів кожний валентний електрон замість того, щоб обертатись навколо свого ядра, починає обертатися навколо двох ядер - свого й сусіднього. Атоми германію утворюють кубічну решітку, в якій кожний атом зв'язаний парноелектронними зв'язками з чотирма найближчими атомами. Так, зовнішні орбіти кожного атома доповнюються до восьми електронів і утворюється найбільш стійкий стан. На рис. 2.10 зображено плоску діаграму парноелектронного зв'язку. В атомі кремнію 14 електронів, з них 4 - валентні, які взаємодіють з іншими атомами так само, як і в германії.
Електричні властивості напівпровідників залежать від освітленості, дії зовнішніх полів, температури, домішок тощо.
При Т
К напівпровідники є ізоляторами, а при
високих температурах їх електропровідність
наближається до провідності металів.
З підвищенням температури електропровідність
напівпровідників зростає, тоді як у
металів вона зменшується.
5.1.2 Власна й домішкова провідність напівпровідників
Розрізняють електропровідність напівпровідників власну й домішкову. Власна електропровідність напівпровідників зумовлена переміщенням електронів власних атомів, які входять до складу структурних елементів кристалічної решітки. Вона буває електронною і дірковою.
Під впливом теплового руху в атомі нейтрального напівпровідника може порушитися парноелектронний зв'язок, якийсь електрон залишить своє місце і перейде до іншого іона. Тоді атом, який віддав свій електрон, стає позитивним іоном. Кажуть, що на місці електрона виник надлишок позитивного заряду, або “позитивна дірка”. Ця дірка поводить себе як елементарний позитивний заряд, що чисельно дорівнює заряду електрона. На місце дірки перейде електрон від іншого атома, і дірка виникне в іншому місці. Цей процес переходу електронів й утворення нових дірок відбувається безладно в усій масі напівпровідника: дірки переходять від одного атома до іншого.
Але слід пам'ятати, що своїм виникненням та переміщенням дірки завдячують рухові електронів. Якщо такий напівпровідник внести в електричне поле, то рух електронів та дірок стане напрямленим; електрон рухатиметься проти поля, а дірки переміщуватимуться в напрямі поля.
Під домішками розуміють введені в кристалічну решітку атоми інших елементів. Навіть незначна частина домішок впливає на електропровідність напівпровідників. Домішки відіграють подвійну роль. В одних випадках вони є додатковими постачальниками електронів у кристалі (атоми таких домішок називаються донорами), а в інших – центрами захоплення електронів у кристалах (атоми таких домішок називаються акцепторами – споживачами). Домішкова провідність напівпровідників буває електронна і діркова.
Розглянемо домішкову електронну провідність на прикладі германію з домішками атомів миш'яку. Германій - чотиривалентний елемент, а миш'як – п'ятивалентний. Коли в кристалічній решітці атом германію заміщується атомом миш'яку, чотири електрони миш'яку утворюють міцний парноелектронний зв'язок з чотирма сусідніми атомами германію, а п'ятий електрон миш'яку слабко зв'язаний із своїм атомом, стає майже вільним навіть при кімнатній температурі. Домішкові атоми миш'яку є донорами електронів. Під впливом електричного поля в напівпровіднику буде струм провідності. Такий напівпровідник має властивість електронної домішкової провідності, або провідності n-типу.
Домішкову діркову провідність германій матиме тоді, коли домішковий елемент буде тривалентний, наприклад, індій, бор. Коли атом германію заміщується атомом індію, останній утворює міцний зв'язок тільки з трьома валентними електронами германію і для утворення повного парноелектронного зв'язку не вистачає одного електрона. Тому один з електронів сусіднього атома германію заповнює к атомі індію валентний четвертий зв'язок. Атоми індію стають центрами захоплення електронів. На місці електрона, який відірвався від германію, з'являється “позитивна дірка”. Ця дірка заповнюється електроном від сусіднього атома германію. Процес повторюється: дірки безладно перемішуються в об'ємі напівпровідника. Піп впливом електричного поля дірки утворюватимуть струм. Такий тип провідності напівпровідника називається дірковою домішковою провідністю або провідністю p-типу.
Якщо в напівпровіднику є одночасно домішки n- і р-типів, то характер провідності залежить від того, які з цих домішок активніші.