
- •Содержание
- •Введение
- •1. Cтруктуры данных и алгоритмы
- •1.1. Понятие структур данных и алгоритмов
- •1.2. Информация и ее представление в памяти
- •1.2.1. Природа информации
- •1.2.2. Хранение информации
- •1.3. Системы счисления
- •1.3.1. Непозиционные системы счисления
- •1.3.2. Позиционные системы счисления
- •1.3.3. Изображение чисел в позиционной системе счисления
- •1.3.4. Перевод чисел из одной системы счисления в другую
- •1.4. Классификация структур данных
- •1.5. Операции над структурами данных
- •1.6. Структурность данных и технология программирования
- •2. Простые структуры данных
- •2.1. Числовые типы
- •2.1.1. Целые типы
- •2.1.2. Вещественные типы
- •1). Число 15.375;
- •2). Десятичное число 0.0375;
- •3). Десятичное число 2.5;
- •4). Значения верхней и нижней границ диапазона положительных чисел:
- •1). Число -15.375;
- •2). Число 1.0;
- •3). Значения верхней и нижней границ диапазона положительных чисел
- •2.1.3. Десятичные типы
- •2.1.4. Операции над числовыми типами
- •2.2. Битовые типы
- •2.3. Логический тип
- •2.4. Символьный тип
- •2.5. Перечислимый тип
- •2.6. Интервальный тип
- •2.7. Указатели
- •2.7.1. Физическая структура указателя
- •2.7.2. Представление указателей в языках программирования
- •2.7.3. Операции над указателями.
- •3. Статические структуры данных
- •3.1. Векторы
- •3.2. Массивы
- •3.2.1. Логическая структура
- •3.2.2. Физическая структура
- •3.2.3. Операции
- •3.2.4. Адресация элементов с помощью векторов Айлиффа
- •3.2.5. Специальные массивы
- •3.3. Множества
- •3.3.1. Числовые множества
- •3.3.2. Символьные множества
- •3.3.3. Множество из элементов перечислимого типа
- •3.3.4. Множество от интервального типа
- •3.3.5. Операции над множествами
- •3.4. Записи
- •3.4.1. Логическое и машинное представление записей
- •3.4.2. Операции над записями
- •3.5. Записи с вариантами
- •3.6. Таблицы
- •3.7. Операции логического уровня над статическими структурами. Поиск
- •3.7.1. Последовательный или линейный поиск
- •3.7.2. Бинарный поиск
- •3.8. Операции логического уровня над статическими структурами. Сортировка
- •3.8.1. Сортировки выборкой
- •3.8.2. Сортировки включением
- •3.8.3. Сортировки распределением.
- •3.8.4. Сортировки слиянием.
- •4. Полустатические структуры данных
- •4.1. Характерные особенности полустатических структур
- •4.2. Стеки
- •4.2.1. Логическая структура стека
- •4.2.2. Машинное представление стека и реализация операций
- •4.2.3. Стеки в вычислительных системах
- •4.3. Очереди fifo
- •4.3.1. Логическая структура очереди
- •4.3.2. Машинное представление очереди fifo и реализация операций
- •4.3.3. Очереди с приоритетами
- •4.3.4. Очереди в вычислительных системах
- •4.4. Деки
- •4.4.1. Логическая структура дека
- •4.4.2. Деки в вычислительных системах
- •4.5. Строки
- •4.5.1. Логическая структура строки
- •4.5.2. Операции над строками
- •4.5.3. Представление строк в памяти.
- •5. Динамические структуры данных. Связные списки
- •5.1. Связное представление данных в памяти
- •5.2. Связные линейные списки
- •5.2.1. Машинное представление связных линейных списков
- •5.2.2. Реализация операций над связными линейными списками
- •5.2.3. Применение линейных списков
- •5.3. Мультисписки
- •5.4. Нелинейные разветвленные списки
- •5.4.1. Основные понятия
- •5.4.2. Представление списковых структур в памяти.
- •5.4.3. Операции обработки списков
- •5.5. Язык программирования lisp
- •5.6. Управление динамически выделяемой памятью
- •6. Нелинейные структуры данных
- •6.1.Графы
- •6.1.1. Логическая структура, определения
- •6.1.2. Машинное представление оpгpафов
- •6.2. Деревья
- •6.2.1. Основные определения
- •6.2.2. Логическое представление и изображение деревьев.
- •6.2.3. Бинарные деревья.
- •6.2.4. Представление любого дерева, леса бинарными деревьями.
- •6.2.5. Машинное представление деревьев в памяти эвм.
- •6.2.6. Основные операции над деревьями.
- •6.2.7. Приложения деревьев.
- •6.2.8 Деревья Хаффмена (деревья минимального кодирования)
- •6.2.9 Деревья при работе с арифметическими выражениями
- •6.2.10 Формирование таблиц символов.
- •6.2.11 Сбалансированные деревья
6.2.7. Приложения деревьев.
Деревья имеют широкое применение при реализации трансляторов таблиц решений, при работе с арифметическими выражениями, при создании и ведении таблиц символов, где их используют для отображения структуры предложений, в системах связи для экономичного кодирования сообщений и во многих других случаях. Рассмотрим некоторые из них.
6.2.8 Деревья Хаффмена (деревья минимального кодирования)
Пусть требуется закодировать длинное сообщение в виде строки битов: А В А С С D А кодом, минимизирующим длину закодированного сообщения. 1) назначим коды:
Символ |
Код |
A |
010 |
B |
100 |
C |
000 |
D |
111 |
Каждый символ тремя битами, получим строку :010 100 010 000 000 111 010.
А В А С С D А
7*3=21 всего 21 бит - неэффективно 2) Сделаем иначе: предположим, что каждому символу назначен 2-битовый код
Символ |
Код |
A |
00 |
B |
01 |
C |
10 |
D |
11 |
00 01 00 10 10 11 00
А В А С С D А
Тогда кодировка требует лишь 14 бит. 3) Выберем коды, которые минимизируют длину сообщения по частоте вхождений символа в строку: много вхождений - код короткий, мало вхождений - код длинный.
А -3 раза, С -2 раза, В -1 раз, D -1 раз то-есть можно:
1. использовать коды переменной длины.
2. код одного символа не должен совпадать с кодом другого (раскодирование идет слева направо).
Если А имеет код 0 т.к часто встречается, то В, С, D - начинаются с 1, если дальше 0,то это С, следующий может быть 0 или 1: 1 - D , 0 - В; то-есть В и D различаются по последнему биту, А -по первому, С - по второму, B и D - по третьему.
Символ |
Код |
A |
0 |
B |
10 |
C |
110 |
D |
111 |
Таким образом, если известны частоты появления символов в сообщении, то метод реализует оптимальную схему кодирования.
Частота появления группы символов равна сумме частот появления каждого символа.
Сообщение АВАССDА кодируется как 0110010101110 и требует лишь 13 бит.
В очень длинных сообщениях, которые содержат символы, встречающиеся очень редко - экономия существенна.
Рис.6.30 Дерево Хаффмена
Обычно коды создаются на основе частоты во всем множестве сообщений, а не только в одном.
6.2.9 Деревья при работе с арифметическими выражениями
Операция объединения двух символов в один использует структуру бинарного дерева. Каждый узел содержит символ и частоту вхождения. Код любого символа может быть определен просмотром дерева снизу вверх, начиная с листа. Каждый раз при прохождении узла приписываем слева к коду 0, если поднимаемся по левой ветви и 1, если поднимаемся по правой ветви. Как только дерево построено код любого символа алфавита может быть определен просмотром дерева снизу вверх, начиная с места, представляющего этот символ. Начальное значение кода пустая строка. Каждый раз, когда мы поднимаемся по левой ветви, к коду слева приписывается ноль, если справа - 1. Часть info узла дерева содержит частоту появления символа представляемого этим узлом. Дерево Хаффмена строго бинарное. Если в алфавите п символов, то дерево Хаффмена может быть представлено массивом узлов размером 2п-1. Поскольку размер памяти, требуемой под дерево известен, она может быть выделена заранее.
МАНИПУЛИРОВАНИЕ АРИФМЕТИЧЕСКИМИ ВЫРАЖЕНИЯМИ.
Дано выражение а*(-b)+с/d
Операции выполняются над выражениями, представленными в виде бинарных деревьев. Такие выражения можно символьно складывать,
Рис.6.31 Представление выражения в виде дерева
Рис. 6.32 Представление выражения в виде бинарного дерева.
перемножать, вычитать, дифференцировать, интегрировать, сравнивать на эквивалентность и т.д. Т.е. получаются символьные выражения, которые можно закодировать в виде таблиц:
(-) - операция унарного минуса;
() - операция возведения в степень;
(+) - операция сложения;
(*) - операция умножения;
(/) - операция деления.
(Е) - указательная переменная, адресующая корень дерева, каждая вершина которого состоит из левого указателя (LPТR), правого указателя (RPTR) и информационного поля TYPE.
LPTR |
DATA |
RPTR |
Для неконцевой вершины поле TYPE задает арифметическую операцию, связанную с этой вершиной. Значения поля TYPE вершин +,-,*, /, (-) и равны 1, 2, 3, 4, 5, 6 соответственно.
Для концевых вершин поле символа в TYPE имеет значение 0, что означает константу или переменную. В этом случае правый указатель вершины задает адрес таблицы символов, который соответствует данной константе или переменной. В дереве указывается тип оператора, а не он сам, что позволяет упростить обработку таких деревьев.
Рис.6.33 Таблица символов
Процедура вычислений:
Создается семимерный массив меток и его элементам задаются требуемые значения.Оператор генерирует метку исходя из значения поля корневой вершины. И передается управление управление оператору, помеченного меткой. Если данная вершина концевая, то в качестве значения выдается значение переменной или константы, обозначенной этой вершиной. Эта операция выполняется путем использования правого указателя данной вершины для ссылки на нужную запись в таблице символов. Для неконцевой вершины инициализируются рекурсивные вычисления ее поддеревьев, характеризующих операнды текущего оператора. Этот процесс продолжается до тех пор, пока не будут достигнуты листья дерева. Для полученных листьев значения выбираются из соответствующих записей таблицы символов.
Ниже приводится программа, вычисляющая арифметическое выражение.