
- •Содержание
- •Введение
- •1. Cтруктуры данных и алгоритмы
- •1.1. Понятие структур данных и алгоритмов
- •1.2. Информация и ее представление в памяти
- •1.2.1. Природа информации
- •1.2.2. Хранение информации
- •1.3. Системы счисления
- •1.3.1. Непозиционные системы счисления
- •1.3.2. Позиционные системы счисления
- •1.3.3. Изображение чисел в позиционной системе счисления
- •1.3.4. Перевод чисел из одной системы счисления в другую
- •1.4. Классификация структур данных
- •1.5. Операции над структурами данных
- •1.6. Структурность данных и технология программирования
- •2. Простые структуры данных
- •2.1. Числовые типы
- •2.1.1. Целые типы
- •2.1.2. Вещественные типы
- •1). Число 15.375;
- •2). Десятичное число 0.0375;
- •3). Десятичное число 2.5;
- •4). Значения верхней и нижней границ диапазона положительных чисел:
- •1). Число -15.375;
- •2). Число 1.0;
- •3). Значения верхней и нижней границ диапазона положительных чисел
- •2.1.3. Десятичные типы
- •2.1.4. Операции над числовыми типами
- •2.2. Битовые типы
- •2.3. Логический тип
- •2.4. Символьный тип
- •2.5. Перечислимый тип
- •2.6. Интервальный тип
- •2.7. Указатели
- •2.7.1. Физическая структура указателя
- •2.7.2. Представление указателей в языках программирования
- •2.7.3. Операции над указателями.
- •3. Статические структуры данных
- •3.1. Векторы
- •3.2. Массивы
- •3.2.1. Логическая структура
- •3.2.2. Физическая структура
- •3.2.3. Операции
- •3.2.4. Адресация элементов с помощью векторов Айлиффа
- •3.2.5. Специальные массивы
- •3.3. Множества
- •3.3.1. Числовые множества
- •3.3.2. Символьные множества
- •3.3.3. Множество из элементов перечислимого типа
- •3.3.4. Множество от интервального типа
- •3.3.5. Операции над множествами
- •3.4. Записи
- •3.4.1. Логическое и машинное представление записей
- •3.4.2. Операции над записями
- •3.5. Записи с вариантами
- •3.6. Таблицы
- •3.7. Операции логического уровня над статическими структурами. Поиск
- •3.7.1. Последовательный или линейный поиск
- •3.7.2. Бинарный поиск
- •3.8. Операции логического уровня над статическими структурами. Сортировка
- •3.8.1. Сортировки выборкой
- •3.8.2. Сортировки включением
- •3.8.3. Сортировки распределением.
- •3.8.4. Сортировки слиянием.
- •4. Полустатические структуры данных
- •4.1. Характерные особенности полустатических структур
- •4.2. Стеки
- •4.2.1. Логическая структура стека
- •4.2.2. Машинное представление стека и реализация операций
- •4.2.3. Стеки в вычислительных системах
- •4.3. Очереди fifo
- •4.3.1. Логическая структура очереди
- •4.3.2. Машинное представление очереди fifo и реализация операций
- •4.3.3. Очереди с приоритетами
- •4.3.4. Очереди в вычислительных системах
- •4.4. Деки
- •4.4.1. Логическая структура дека
- •4.4.2. Деки в вычислительных системах
- •4.5. Строки
- •4.5.1. Логическая структура строки
- •4.5.2. Операции над строками
- •4.5.3. Представление строк в памяти.
- •5. Динамические структуры данных. Связные списки
- •5.1. Связное представление данных в памяти
- •5.2. Связные линейные списки
- •5.2.1. Машинное представление связных линейных списков
- •5.2.2. Реализация операций над связными линейными списками
- •5.2.3. Применение линейных списков
- •5.3. Мультисписки
- •5.4. Нелинейные разветвленные списки
- •5.4.1. Основные понятия
- •5.4.2. Представление списковых структур в памяти.
- •5.4.3. Операции обработки списков
- •5.5. Язык программирования lisp
- •5.6. Управление динамически выделяемой памятью
- •6. Нелинейные структуры данных
- •6.1.Графы
- •6.1.1. Логическая структура, определения
- •6.1.2. Машинное представление оpгpафов
- •6.2. Деревья
- •6.2.1. Основные определения
- •6.2.2. Логическое представление и изображение деревьев.
- •6.2.3. Бинарные деревья.
- •6.2.4. Представление любого дерева, леса бинарными деревьями.
- •6.2.5. Машинное представление деревьев в памяти эвм.
- •6.2.6. Основные операции над деревьями.
- •6.2.7. Приложения деревьев.
- •6.2.8 Деревья Хаффмена (деревья минимального кодирования)
- •6.2.9 Деревья при работе с арифметическими выражениями
- •6.2.10 Формирование таблиц символов.
- •6.2.11 Сбалансированные деревья
4.5.2. Операции над строками
Базовыми операциями над строками являются:
определение длины строки;
присваивание строк;
конкатенация (сцепление) строк;
выделение подстроки;
поиск вхождения.
Операция определения длины строки имеет вид функции, возвращаемое значение которой - целое число - текущее число символов в строке. Операция присваивания имеет тот же смысл, что и для других типов данных.
Операция сравнения строк имеет тот же смысл, что и для других типов данных. Сравнение строк производится по следующим правилам. Сравниваются первые символы двух строк. Если символы не равны, то строка, содержащая символ, место которого в алфавите ближе к началу, считается меньшей. Если символы равны, сравниваются вторые, третьи и т.д. символы. При достижении одной конца одной из строк строка меньшей длины считается меньшей. При равенстве длин строк и попарном равенстве всех символов в них строки считаются равными.
Результатом операции сцепления двух строк является строка, длина которой равна суммарной длине строк-операндов, а значение соответствует значению первого операнда, за которым непосредственно следует значение второго операнда. Операция сцепления дает результат, длина которого в общем случае больше длин операндов. Как и во всех операциях над строками, которые могут увеличивать длину строки (присваивание, сцепление, сложные операции), возможен случай, когда длина результата окажется большей, чем отведенный для него объем памяти. Естественно, эта проблема возникает только в тех языках, где длина строки ограничивается. Возможны три варианта решения этой проблемы, определяемые правилами языка или режимами компиляции:
никак не контролировать такое превышение, возникновение такой ситуации неминуемо приводит к труднолокализуемой ошибке при выполнении программы;
завершать программу аварийно с локализацией и диагностикой ошибки;
ограничивать длину результата в соответствии с объемом отведенной памяти;
Операция выделения подстроки выделяет из исходной строки последовательность символов, начиная с заданной позиции n, с заданной длиной l. В языке PASCAL соответствующая функция называется COPY. В языках PL/1, REXX соответствующая функция - SUBSTR - обладает интересным свойством, отсутствующим в PASCAL. Функция SUBSTR может употребляться в левой части оператора присваивания. Например, если исходное значение некоторой строки S - 'ABCDEFG', то выполнение оператора: SUBSTR(S,3,3)='012'; изменит значение строки S на - 'AB012FG'.
При реализации операции выделения подстроки в языке программирования и в пользовательской процедуре обязательно должно быть определено правило получения результата для случая, когда начальная позиция n задана такой, что оставшаяся за ней часть исходной строки имеет длину, меньшую заданной длины l, или даже n превышает длину исходной строки. Возможные варианты такого правила:
аварийное завершение программы с диагностикой ошибки;
формирование результата меньшей длины, чем задано, возможно даже - пустой строки.
Операция поиска вхождения находит место первого вхождения подстроки-эталона в исходную строку. Результатом операции может быть номер позиции в исходной строке, с которой начинается вхождение эталона или указатель на начало вхождения. В случае отсутствия вхождения результатом операции должно быть некоторое специальное значение, например, нулевой номер позиции или пустой указатель.
На основе базовых операций могут быть реализованы и любые другие, даже сложные операции над строками. Например, операция удаления из строки символов с номерами от n1 включительно n2 может быть реализована как последовательность следующих шагов:
выделение из исходной строки подстроки, начиная с позиции 1, длиной n1-1;
выделение из исходной строки подстроки, начиная с позиции n2+1, длиной длина исходной строки - n2;
сцепление подстрок, полученных на предыдущих шагах.
Впрочем, в целях повышения эффективности некоторые вторичные операции также могут быть реализованы как базовые - по собственным алгоритмам, с непосредственным доступом к физической структуре строки.