
- •Содержание
- •Введение
- •1. Cтруктуры данных и алгоритмы
- •1.1. Понятие структур данных и алгоритмов
- •1.2. Информация и ее представление в памяти
- •1.2.1. Природа информации
- •1.2.2. Хранение информации
- •1.3. Системы счисления
- •1.3.1. Непозиционные системы счисления
- •1.3.2. Позиционные системы счисления
- •1.3.3. Изображение чисел в позиционной системе счисления
- •1.3.4. Перевод чисел из одной системы счисления в другую
- •1.4. Классификация структур данных
- •1.5. Операции над структурами данных
- •1.6. Структурность данных и технология программирования
- •2. Простые структуры данных
- •2.1. Числовые типы
- •2.1.1. Целые типы
- •2.1.2. Вещественные типы
- •1). Число 15.375;
- •2). Десятичное число 0.0375;
- •3). Десятичное число 2.5;
- •4). Значения верхней и нижней границ диапазона положительных чисел:
- •1). Число -15.375;
- •2). Число 1.0;
- •3). Значения верхней и нижней границ диапазона положительных чисел
- •2.1.3. Десятичные типы
- •2.1.4. Операции над числовыми типами
- •2.2. Битовые типы
- •2.3. Логический тип
- •2.4. Символьный тип
- •2.5. Перечислимый тип
- •2.6. Интервальный тип
- •2.7. Указатели
- •2.7.1. Физическая структура указателя
- •2.7.2. Представление указателей в языках программирования
- •2.7.3. Операции над указателями.
- •3. Статические структуры данных
- •3.1. Векторы
- •3.2. Массивы
- •3.2.1. Логическая структура
- •3.2.2. Физическая структура
- •3.2.3. Операции
- •3.2.4. Адресация элементов с помощью векторов Айлиффа
- •3.2.5. Специальные массивы
- •3.3. Множества
- •3.3.1. Числовые множества
- •3.3.2. Символьные множества
- •3.3.3. Множество из элементов перечислимого типа
- •3.3.4. Множество от интервального типа
- •3.3.5. Операции над множествами
- •3.4. Записи
- •3.4.1. Логическое и машинное представление записей
- •3.4.2. Операции над записями
- •3.5. Записи с вариантами
- •3.6. Таблицы
- •3.7. Операции логического уровня над статическими структурами. Поиск
- •3.7.1. Последовательный или линейный поиск
- •3.7.2. Бинарный поиск
- •3.8. Операции логического уровня над статическими структурами. Сортировка
- •3.8.1. Сортировки выборкой
- •3.8.2. Сортировки включением
- •3.8.3. Сортировки распределением.
- •3.8.4. Сортировки слиянием.
- •4. Полустатические структуры данных
- •4.1. Характерные особенности полустатических структур
- •4.2. Стеки
- •4.2.1. Логическая структура стека
- •4.2.2. Машинное представление стека и реализация операций
- •4.2.3. Стеки в вычислительных системах
- •4.3. Очереди fifo
- •4.3.1. Логическая структура очереди
- •4.3.2. Машинное представление очереди fifo и реализация операций
- •4.3.3. Очереди с приоритетами
- •4.3.4. Очереди в вычислительных системах
- •4.4. Деки
- •4.4.1. Логическая структура дека
- •4.4.2. Деки в вычислительных системах
- •4.5. Строки
- •4.5.1. Логическая структура строки
- •4.5.2. Операции над строками
- •4.5.3. Представление строк в памяти.
- •5. Динамические структуры данных. Связные списки
- •5.1. Связное представление данных в памяти
- •5.2. Связные линейные списки
- •5.2.1. Машинное представление связных линейных списков
- •5.2.2. Реализация операций над связными линейными списками
- •5.2.3. Применение линейных списков
- •5.3. Мультисписки
- •5.4. Нелинейные разветвленные списки
- •5.4.1. Основные понятия
- •5.4.2. Представление списковых структур в памяти.
- •5.4.3. Операции обработки списков
- •5.5. Язык программирования lisp
- •5.6. Управление динамически выделяемой памятью
- •6. Нелинейные структуры данных
- •6.1.Графы
- •6.1.1. Логическая структура, определения
- •6.1.2. Машинное представление оpгpафов
- •6.2. Деревья
- •6.2.1. Основные определения
- •6.2.2. Логическое представление и изображение деревьев.
- •6.2.3. Бинарные деревья.
- •6.2.4. Представление любого дерева, леса бинарными деревьями.
- •6.2.5. Машинное представление деревьев в памяти эвм.
- •6.2.6. Основные операции над деревьями.
- •6.2.7. Приложения деревьев.
- •6.2.8 Деревья Хаффмена (деревья минимального кодирования)
- •6.2.9 Деревья при работе с арифметическими выражениями
- •6.2.10 Формирование таблиц символов.
- •6.2.11 Сбалансированные деревья
3.8.4. Сортировки слиянием.
Алгоритмы сортировки слиянием, как правило, имеют порядок O(N*log2(N)), но отличаются от других алгоритмов большей сложностью и требуют большого числа пересылок. Алгоритмы слияния применяются в основном, как составная часть внеш- ней сортировки, которая более подробно будет рассматриваться нами во втором томе нашего пособия. Здесь же для понимания принципа слияния мы приводим простейший алгоритм слияния в оперативной памяти.
Сортировка попарным слиянием.
Входное множество рассматривается, как последовательность подмножеств, каждое из которых состоит из единственного элемента и, следовательно, является уже упорядоченным. На первом проходе каждые два соседних одно-элементных множества сливаются в одно двух-элементное упорядоченное множество. На втором проходе двух-элементные множества сливаются в 4-элементные упорядоченные множества и т.д. В конце концов мы получаем одно большое упорядоченное множество.
Важнейшей частью алгоритма является слияние двух упорядоченных множеств. Эту часть алгоритма мы опишем строго.
1. [Начальные установки]. Определить длины первого и второго исходных множеств - l1 и l2 соответственно. Установить индексы текущих элементов в исходных множествах i1 и i2 в 1. Установить индекс в выходном множестве j=1.
2. [Цикл слияния]. Выполнять шаг 3 до тех пор, пока i1<=l1 и i2<=l2.
3. [Сравнение]. Сравнить ключ i1-го элемента из 1-го исходного множества с ключом i2-го элемента из второго исходного множества. Если ключ элемента из 1-го множества меньше, то записать i1-ый элемент из 1-го множества на j-ое место в выходное множество и увеличить i1 на 1. Иначе - записать i2-ой элемент из 2-го множества на j-ое место в выходное множество и увеличить i2 на 1. Увеличить j на 1.
4. [Вывод остатка]. Если i1<=l1, то переписать часть 1-го исходного множества от i1 до l1 включительно в выходное множество. Иначе - переписать часть 2-го исходного множества от i2 до l2 включительно в выходное множество.
Программный пример 3.17 иллюстрирует сортировку попарным слиянием в ее обменном варианте - выходные множества формируются на месте входных.
{===== Программный пример 3.17 =====}
{ Сортировка слиянием }
Procedure Sort(var a :Seq);
Var i0,j0,i,j,si,sj,k,ke,t,m : integer;
begin
si:=1; { начальный размер одного множества }
while si < N do begin
{ цикл пока одно множество не составит весь массив }
i0:=1; { нач. индекс 1-го множества пары }
while i0 < N do begin
{ цикл пока не пересмотрим весь массив }
j0:=i0+si; { нач. индекс 2-го множества пары }
i:=i0; j:=j0;
{ размер 2-го множества пары может ограничиваться
концом массива }
if si > N-j0+1 then sj:=N-j0+1 else sj:=si;
if sj > 0 then begin
k:=i0; { нач. индекс слитого множества }
while (i < i0+si+sj) and (j a[j] then begin
{ если эл-т 1-го <= элемента 2-го, он остается на
своем месте, но вых.множество расширяется иначе -
освобождается место в вых.множестве и туда заносится
эл-т из 2-го множества }
t:=a[j];
for m:=j-1 downto k do a[m+1]:=a[m];
a[k]:=t;
j:=j+1; { к след. эл-ту во 2-м множестве }
end; { if a[i] > a[j] }
k:=k+1; { вых. множество увеличилось }
i:=i+1; { если был перенос - за счет сдвига, если
не было - за счет перехода эл-та в вых. }
end; { while }
end; { if sj > 0 }
i0:=i0+si*2; { начало следующей пары }
end; { while i0 < N }
si:=si*2; { размер эл-тов пары увеличивается вдвое }
end; { while si < N }
end;
Результаты трассировки примера приведены в таблице 3.11. Для каждого прохода показаны множества, которые на этом проходе сливаются. Обратите внимание на обработку последнего множества, оставшегося без пары.
Таблица 3.11