
- •Содержание
- •Введение
- •1. Cтруктуры данных и алгоритмы
- •1.1. Понятие структур данных и алгоритмов
- •1.2. Информация и ее представление в памяти
- •1.2.1. Природа информации
- •1.2.2. Хранение информации
- •1.3. Системы счисления
- •1.3.1. Непозиционные системы счисления
- •1.3.2. Позиционные системы счисления
- •1.3.3. Изображение чисел в позиционной системе счисления
- •1.3.4. Перевод чисел из одной системы счисления в другую
- •1.4. Классификация структур данных
- •1.5. Операции над структурами данных
- •1.6. Структурность данных и технология программирования
- •2. Простые структуры данных
- •2.1. Числовые типы
- •2.1.1. Целые типы
- •2.1.2. Вещественные типы
- •1). Число 15.375;
- •2). Десятичное число 0.0375;
- •3). Десятичное число 2.5;
- •4). Значения верхней и нижней границ диапазона положительных чисел:
- •1). Число -15.375;
- •2). Число 1.0;
- •3). Значения верхней и нижней границ диапазона положительных чисел
- •2.1.3. Десятичные типы
- •2.1.4. Операции над числовыми типами
- •2.2. Битовые типы
- •2.3. Логический тип
- •2.4. Символьный тип
- •2.5. Перечислимый тип
- •2.6. Интервальный тип
- •2.7. Указатели
- •2.7.1. Физическая структура указателя
- •2.7.2. Представление указателей в языках программирования
- •2.7.3. Операции над указателями.
- •3. Статические структуры данных
- •3.1. Векторы
- •3.2. Массивы
- •3.2.1. Логическая структура
- •3.2.2. Физическая структура
- •3.2.3. Операции
- •3.2.4. Адресация элементов с помощью векторов Айлиффа
- •3.2.5. Специальные массивы
- •3.3. Множества
- •3.3.1. Числовые множества
- •3.3.2. Символьные множества
- •3.3.3. Множество из элементов перечислимого типа
- •3.3.4. Множество от интервального типа
- •3.3.5. Операции над множествами
- •3.4. Записи
- •3.4.1. Логическое и машинное представление записей
- •3.4.2. Операции над записями
- •3.5. Записи с вариантами
- •3.6. Таблицы
- •3.7. Операции логического уровня над статическими структурами. Поиск
- •3.7.1. Последовательный или линейный поиск
- •3.7.2. Бинарный поиск
- •3.8. Операции логического уровня над статическими структурами. Сортировка
- •3.8.1. Сортировки выборкой
- •3.8.2. Сортировки включением
- •3.8.3. Сортировки распределением.
- •3.8.4. Сортировки слиянием.
- •4. Полустатические структуры данных
- •4.1. Характерные особенности полустатических структур
- •4.2. Стеки
- •4.2.1. Логическая структура стека
- •4.2.2. Машинное представление стека и реализация операций
- •4.2.3. Стеки в вычислительных системах
- •4.3. Очереди fifo
- •4.3.1. Логическая структура очереди
- •4.3.2. Машинное представление очереди fifo и реализация операций
- •4.3.3. Очереди с приоритетами
- •4.3.4. Очереди в вычислительных системах
- •4.4. Деки
- •4.4.1. Логическая структура дека
- •4.4.2. Деки в вычислительных системах
- •4.5. Строки
- •4.5.1. Логическая структура строки
- •4.5.2. Операции над строками
- •4.5.3. Представление строк в памяти.
- •5. Динамические структуры данных. Связные списки
- •5.1. Связное представление данных в памяти
- •5.2. Связные линейные списки
- •5.2.1. Машинное представление связных линейных списков
- •5.2.2. Реализация операций над связными линейными списками
- •5.2.3. Применение линейных списков
- •5.3. Мультисписки
- •5.4. Нелинейные разветвленные списки
- •5.4.1. Основные понятия
- •5.4.2. Представление списковых структур в памяти.
- •5.4.3. Операции обработки списков
- •5.5. Язык программирования lisp
- •5.6. Управление динамически выделяемой памятью
- •6. Нелинейные структуры данных
- •6.1.Графы
- •6.1.1. Логическая структура, определения
- •6.1.2. Машинное представление оpгpафов
- •6.2. Деревья
- •6.2.1. Основные определения
- •6.2.2. Логическое представление и изображение деревьев.
- •6.2.3. Бинарные деревья.
- •6.2.4. Представление любого дерева, леса бинарными деревьями.
- •6.2.5. Машинное представление деревьев в памяти эвм.
- •6.2.6. Основные операции над деревьями.
- •6.2.7. Приложения деревьев.
- •6.2.8 Деревья Хаффмена (деревья минимального кодирования)
- •6.2.9 Деревья при работе с арифметическими выражениями
- •6.2.10 Формирование таблиц символов.
- •6.2.11 Сбалансированные деревья
3.7. Операции логического уровня над статическими структурами. Поиск
В этом и следующих разделах представлен ряд алгоритмов поиска данных и сортировок, выполняемых на статических структурах данных, так как это характерные операции логического уровня для таких структур. Однако, те же операции и те же алгоритмы применимы и к данным, имеющим логическую структуру таблицы, но физически размещенным в динамической памяти и на внешней памяти, а также к логическим таблицам любого физического представления, обладающим изменчивостью.
Объективным критерием, позволяющим оценить эффективность того или иного алгоритма, является, так называемый, порядок алгоритма. Порядком алгоритма называется функция O(N), позволяющая оценить зависимость времени выполнения алгоритма от объема перерабатываемых данных (N - количество элементов в массиве или таблице). Эффективность алгоритма тем выше, чем меньше время его выполнения зависит от объема данных. Большинство алгоритмов с точки зрения порядка сводятся к трем основным типам:
- степенные - O(N^a);
- линейные - O(N);
- логарифмические - O(logA(N)). (Здесь и далее запись вида "logА" обозначает "логарифм по основанию А").
Эффективность степенных алгоритмов обычно считается плохой, линейных - удовлетворительной, логарифмических - хорошей.
Аналитическое определение порядка алгоритма, хотя часто и сложно, но возможно в большинстве случаев. Возникает вопрос: зачем тогда нужно такое разнообразие алгоритмов, например, сортировок, если есть возможность раз и навсегда определить алгоритм с наилучшим аналитическим показателем эффективности и оставить "право на жизнь" исключительно за ним? Ответ прост: в реальных задачах имеются ограничения, определяемые как логикой задачи, так и свойствами конкретной вычислительной среды, которые могут помогать или мешать программисту, и которые могут существенно влиять на эффективность данной конкретной реализации алгоритма. Поэтому выбор того или иного алгоритма всегда остается за программистом.
В последующем изложении все описания алгоритмов даны для работы с таблицей, состоящей из записей R[1], R[2], ..., R[N] с ключами K[1], K[2], ..., K[N]. Во всех случаях N - количество элементов таблицы. Программные примеры для сокращения их объема работают с массивами целых чисел. Такой массив можно рассматривать как вырожденный случай таблицы, каждая запись которой состо- ит из единственного поля, которое является также и ключом. Во всех программных примерах следует считать уже определенными: константу N- целое положительное число, число элементов в массиве; константу EMPTY - целое число, признак "пусто" (EMPTY=-1); тип - type SEQ = array[1..N] of integer; сортируемые последовательности.
3.7.1. Последовательный или линейный поиск
Простейшим методом поиска элемента, находящегося в неупорядоченном наборе данных, по значению его ключа является последовательный просмотр каждого элемента набора, который продолжается до тех пор, пока не будет найден желаемый элемент. Если просмотрен весь набор, но элемент не найден - значит, искомый ключ отсутствует в наборе.
Для последовательного поиска в среднем требуется (N+1)/2 сравнений. Таким образом, порядок алгоритма - линейный - O(N).
Программная иллюстрация линейного поиска в неупорядоченном массиве приведена в следующем примере, где a - исходный массив, key - ключ, который ищется; функция возвращает индекс найденного элемента или EMPTY - если элементт отсутствует в массиве.
{===== Программный пример 3.4 =====}
Function LinSearch( a : SEQ; key : integer) : integer;
var i : integer;
for i:=1 to N do { перебор эл-тов массива }
if a[i]=key then begin { ключ найден - возврат индекса }
LinSearch:=i; Exit; end;
LinSearch:=EMPTY; {просмотрен весь массив, но ключ не найден }
end;