
- •Введение
- •1.Основные понятия и принципы моделирования Определение моделирования
- •1.1. Принципы построения математических моделей
- •Обобщенная математическая модель
- •1.2. Оценка эффективности стратегий
- •1.3. Классификация задач исследования операций
- •1.4. Модели выбора решений в условиях определенности
- •2. Математическое программирование
- •2.1. Постановка задачи линейного программирования.
- •Формы записи задач линейного программирования
- •Решение задачи лп графическим методом :
- •Геометрическая интерпретация и графический метод решения задачи линейного программирования
- •3. Геометрическая интерпретация задач линейного программирования
- •2.1.1 Симплексный метод решения задач линейного программирования
- •2.1.2Алгоритм симплекс метода отыскания оптимального решения задачи линейного программирования
- •2.1.3Примеры решения задач симплексным методом Пример 1. Найти максимум целевой функции
- •§4. Решение задачи лп двухфазным симплекс-методом
- •2.1.4 Задачи для закрепления полученных знаний
- •2.1.5. Двойственная задача
- •2.1.6Основные теоремы двойственности
- •2.1.7. Транспортная задача
- •2.1.8. Первоначальное распределение поставок
- •2.1.9. Правило "Северо-западного угла"
- •2.1.11. Метод потенциалов.
- •2.2. Модели динамического программирования
- •2.2.1. Постановка задачи динамического программирования
- •2.2.2. Принцип оптимальности и математическое описание динамического процесса управления
- •2.2.3. Оптимальное распределение инвестиций
- •2.2.3. Выбор оптимальной стратегии обновления оборудования
- •2.3. Сетевое моделирование. Методы и модели теории графов и сетевого моделирования
- •2.3.1. Элементы теории графов
- •2.3.2. Сетевое планирование и управление
- •2.3.3. Основные понятия и терминология, используемые в сетевом планировании
- •2.3.4. Порядок построения сетевых графиков
- •2.3.5. Правила построения сетевого графика.
- •2.3.6. Основные понятия сетевого графика
- •2.3.7. Временные параметры сетевых графиков
- •3. Задачи в условиях неопределенности
- •3.1. Системы массового обслуживания
- •3.1.1. Структура простейшей системы массового обслуживания.
- •3.1.2. Система массового обслуживания с отказом. Одноканальная система.
- •3.1.3. Системы массового обслуживания с ожиданием.
- •Имитационное моделирование
- •3.2.1. Основы имитационного моделирования
- •3.2.2. Метод статистических испытаний
- •3.2.3. Формирование случайных чисел на эвм
- •3.3. Модели прогнозирования. Задачи управления запасами
- •3.3.1.Основные понятия управления запасами
- •3.3.2. Классификация моделей управления запасами
- •3.3.3. Складская система
- •3.3.4. Спрос на товары
- •3.3.5. Возможность пополнения запасов
- •3.3.6. Затраты на функционирование системы управления запасами
- •3.3.7. Стратегия управления запасами
- •3.3.8. Основные детерминированные модели. Простейшая модель управления запасами ( модель 1)
- •3.3.9. Модель с учетом дефицита (модель 2)
- •С помощью этих соотношений исключим т1, т2, т и получим
- •Оптимальное значение
- •График зависимости уровня запаса на складе от времени
- •Методы и модели теории игр
- •3.4.1. Основные понятия теории игр
- •3.4.2. Постановка игровых задач
- •3.4.3. Методы решения игровых задач
- •3.4.4. Метод линейного программирования
- •Литература
Обобщенная математическая модель
Математическая модель описывает зависимость между исходными данными и искомыми величинами.
Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.
Элементами обобщенной математической модели являются (рис. 1):
множество входных данных (переменные) X,Y;
X - совокупность варьируемых переменных;
Y - независимые переменные (константы);
математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);
множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.
Рис. 1.Обобщенная математическая модель
Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.
Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров Rx (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.
Множество независимых переменных Y образуют метрическое пространство входных данных Ry. В том случае, когда каждый компонент пространства Ry задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства Ry.
Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект.
Это могут быть:
- технические параметры объекта, не подлежащие изменению в процессе проектирования; - физические возмущения среды, с которой взаимодействует объект проектирования; - тактические параметры, которые должен достигать объект проектирования.
Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей RG.
Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.
Рис. 2. Схема использования математической модели
1.2. Оценка эффективности стратегий
Принятие решения – это процесс, итогом которого является выбор по критерию эффективности одной возможности из множества, имеющихся в распоряжении. Качество решения задачи зависит от того, насколько полно известны лицу, ответственному за принятие решения, допустимые варианты управленческих воздействий. Поэтому формирование всего множества вариантов активного воздействия является важным этапом анализа. Для количественного анализа приходится привлекать специалистов различного профиля, что обеспечивает больший объем знаний и возможность выявления таких решений, которые не могли быть найдены при узкой профессиональной ориентации исследователей. Взаимосвязь критерия эффективности F с управляемыми показателями x1 , x2 ,…xп и неуправляемыми b1 ,b2 ,… bп записывается обобщенном варианте в виде целевой функции:
F=f(x1 , x2 , …xп ; b1 , b2 , …bп )--> extr (1.1)
Оптимальные значения критерия соответствуют определению оптимальных значений управляемых показателей:
X01 = ? X02 = ? … X0n = ? (1.2)
Задача сводится к построению математической модели и определению значения критерия эффективности. Этому служат математические методы дифференцирования, интегрирования, теории игр и статистических решений, линейного и нелинейного программирования, сетевого планирования и управления, теории массового обслуживания, управления запасами и т.д.