Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по БХ 2 модуль 3 тема.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
302.39 Кб
Скачать

2. Современные представления о биологическом окислении, особенности аэробного метаболизма. Роль кислорода.

Современные представления о биологическом окислении Согласно современной теории БО, окисление происходит как в аэробных, так и в анаэробных условиях. В аэробных организмах существует несколько путей использования О2. Реакции БО необходимы для получения энергии, синтеза новых веществ и разрушения чужеродных веществ. БО является сложным, многостадийным процессом, в котором ведущую роль играют ферменты оксидоредуктазы.  Окислительно-восстановительные реакции (ОВР) – реакции, в которых меняется степень окисления субстрата за счет присоединения/отщепления: 1) 1 е-; 2) 2е- и 2Н+; 3) атомов кислорода. Биологическое окисление (БО) совокупность окислительно-восстановительных реакций, которые протекают во всех живых клетках. Основная функция БО - обеспечение организма энергией в доступной для использования форме (АТФ). Субстрат БО – вещество, способное отдавать электрон.  Тканевое дыхание – окисление органических веществ в клетках, сопровождающееся потреблением О2 и выделением воды. Субстрат тканевого дыхания – это вещество, которое отдает электрон непосредственно в цепь окислительного фосфорилирования. Дыхательная цепь – цепь переноса электронов. В переносе электронов от субстратов БО к О2 принимают участие: 1) НАД и НАДФ зависимые ДГ; 2) ФАД и ФМН зависимые ДГ; 3) цитохромы; 4) коэнзим Q; 5) белки, содержащие негеминовое железо.  Свободная энергия. Каждое органическое вещество обладает определенным запасом внутренней энергии (Е). Часть этой внутренней энергии может быть использована для совершения полезной работы, такую энергию называют свободной (G). Направление химической реакции определяется значением ∆G. У катаболических реакций ∆G отрицательно, эти реакции протекают самопроизвольно (экзергонические реакции). У анболических реакций ∆G положительно, они протекают только при поступлении свободной энергии извне (эндергонические реакции).

  1. Объясните схему организации дыхательной цепи (ферментные комплексы, коферменты).

К числу ферментов дыхательной цепи относятся: 1. Пиридинзависимые дегидрогеназы с коферментом НАД + и НАДФ+; 2. Флавинзависимые дегидрогеназы (флавопротеиды), у которых простетической группой служат ФМН и ФАД; 3. Цитохромы и цитохромоксидаза, их простетической группой является гем.

  1. Редокс-потенциалы и локализация компонентов дыхательной цепи.

Редокс-потенциалы. В каждой окислительно-восстановительной системе участвует окисленная и восстановленная формы одного соединения, которые образуют сопряженную окислительно-восстановительную или редокс-пару. Разные редокс-пары обладают различным сродством к электрону. Мерой сродства редокс-пары к электрону служит окислительно-восстановительный потенциал, или редокс-потенциал (Ео'), величина которого прямо пропорциональна изменению свободной энергии ∆G. Величину Ео' выражают в вольтах; чем она отрицательнее, тем меньше сродство вещества к электронам и наоборот.  Самое низкое сродство к электрону -0,42В у водорода. Самое высокое сродство к электрону +0,82В у О2. Компоненты дыхательной цепи имеют редокс-потенциалы, занимающие промежуточное положение между -0,42В и +0,82В. В дыхательной цепи, вещества переносящие электрон, располагаются в порядке увеличения их редокс-потенциала. Электрон перемещается по дыхательной цепи от веществ с низким сродством к электрону к веществам с более высоким сродством к электрону, при этом происходит высвобождение свободной энергии, часть которой фиксируется в виде макроэргических соединений. Электроны в дыхательную цепь поставляют субстраты тканевого дыхания.

  1. Опишите формулы окисленных и восстановленных форм пиридинзависимых коферментов (НАД). Какая часть структуры НАД является акцептором (донором) в переносе электронов и протонов?

Первый тип переносчиков электронов и протонов (ферментов дегидрогеназ) в дыхательной цепи представлен никотинамидными коферментами - НАД(никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклеотидфосфат). Они состоят из: азотистых оснований – амида никотиновой кислоты (витамин В5) и аденина, двух углеводных компонентов – Д-рибозы, двух остатков фосфорной кислоты. НАДФ отличается от НАД наличием еще одной фосфатной группы у 2-го атома углерода аденилового нуклеотида. Известно более 150 дегидрогеназ, коферментами которых являются НАД или НАДФ. Эти дегидрогеназы называются пиридинзависимыми, поскольку содержат никотинамид – производное пиридина. НАД и НАДФ обнаруживаются во всех типах клеток, причем НАД содержится в значительно больших количествах по сравнению с НАДФ. Дегидрогеназы, связанные с НАД, принимают участие, главным образом, в процессе дыхания (т.е. в переносе протонов и электронов от субстратов к кислороду), тогда как дегидрогеназы, связанные с НАДФ, участвуют преимущественно в переносе протонов и электронов от субстратов к восстановительным реакциям биосинтеза.