
- •Билет №1 Интерференция световых волн. Когерентность световых волн. Условие мах. И мин. Для интерференции света. Оптическая длина пути.
- •Опыт Юнга
- •Зеркала Френеля
- •Бипризма Френеля
- •Интерференция света в тонких пленках. Полосы равного наклона и равной толщины.
- •Билет №5 Кольца Ньютона. Способ их наблюдения. Радиусы колец.
- •Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
- •Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- •Билет 8 Дифракция Френеля на круглом отверстии:
- •Билет №9 дифракция фраунгофера на одной щели.
- •Билет№10
- •Билет № 11 Дифракционная решетка как спектральный прибор. Угловая и линейная дисперсия. Разрешающая способность.
- •3. 7. Дисперсия и разрешающая сила спектрального прибора. @
- •Билет 13 Понятие о голографии. Получение и восстановление голографических снимков. Особенности голографического снимка.
- •Билет 14
- •Вопрос 18
- •Вопрос 19. Вращение плоскости поляризации света. Оптический активные вещества.
- •Вопрос 20 Магнитное вращение плоскости поляризации
- •Вопрос 21 Искусственная оптическая поляризация. Эффект Керра и Коттона- Мутона.
- •Вопрос 22 Поглощение света при прохождении через вещество. Механизм поглощения.
- •Вопрос 23 Рассеяние света в веществе.
- •Вопрос 24 Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.
- •Вопрос 25 Эффект Вавилова- Черенкова.
- •Вопрос 26
- •Впорс 27 Связь между лучеиспускательной и поглащательной способностями тел.
- •Вопрос 28 Распределение световой энергии в спектре абсолютно- черного тела. Серые тела.
- •Вопрос 29 Теория Релея и Джинса. Затруднения классической теории излучения.
- •Вопрос 30 Квантовая гипотеза Планка. Энергия светвого кванта. Функция распределения Планка.
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •Вопрос 34
- •Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 38
- •Вопрос 39
- •Вопрос 40
- •Вопрос 41
- •Вопрос 42
- •Вопрос 43
- •Вопрос 45 Частица в одномерной потенциальной яме. Квантование энергии.
- •Вопрос 46
- •Вопрос 47
- •Вопрос 48
- •Вопрос 49
- •Вопрос 50 Периодическая система химических элементов - естественная классификация химических элементов, являющаяся табличным выражением периодического закона д.И. Менделеева.
Билет №5 Кольца Ньютона. Способ их наблюдения. Радиусы колец.
Частным случаем полос равной толщины являются кольца Ньютона. Их можно наблюдать с помощью оптической установки, схематически изображенной на рис. 2.8. Плосковыпуклая линза большого радиуса кривизны лежит на плоской пластинке так, что между ними образуется воздушный клин переменной толщины d. Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней (луч 1’) и нижней (луч 1’’) поверхностей воздушного клина. Лучи 1’ и 1’’ когерентные и имеют разность хода ∆ = 2d-λ/2. Такую же разность хода (а, значит, и одинаковое условие интерференции) будут иметь лучи, падающие на клин в местах одинаковой толщины d, а одинаковую толщину клин имеет по окружности. Поэтому интерференционная картина будет состоять из светлых и темных колец, называемых кольцами Ньютона. В центре картины находится темное пятно, которое обусловлено наложением лучей 1’ и 1’’ в точке D, где d = 0, а разность хода ∆ = λ/2, что соответствует условию минимума. От точки D к краям линзы толщина клина неравномерно растет, поэтому ширина и интенсивность колец убывает по мере удаления их от центрального пятна. При наблюдении колец Ньютона в проходящем свете из-за отсутствия потери полуволны в центре картины будет наблюдаться светлое пятно, затем первое темное кольцо и так далее. Максимумы в проходящем свете соответствуют минимумам в отраженном. При наклонном падении света на линзу вместо колец на интерференционной картине получаются эллипсы. Если свет будет не монохроматическим, а белым, светлые кольца приобретают радужную окраску.
Билет№6
Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
Интерферометры - это измерительные приборы, в которых используется интерференция волн. В соответствии с природой волн существуют интерферометры акустические для звуковых волн и интерферометры для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Акустические интерферометры и радиоинтерферометры используются для измерения скорости распространения волн (акустических и радио), для измерения расстояний между двумя излучателями волн или между излучателем и отражающим телом, то есть применяются как дальномеры. Наибольшее распространение получили оптические интерферометры, о которых пойдёт речь ниже. Они применяются для измерения длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин, угловых размеров звёзд, для контроля качества оптических деталей и их поверхностей, для контроля чистоты обработки металлических поверхностей и так далее. Принцип действия всех интерферометров одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. В основе интерферометров лежит пространственное разделение пучка света с помощью того или иного устройства с целью получения двух или более взаимно когерентных лучей, которые проходят различные оптические пути, а затем сводятся вместе и наблюдается результат их интерференции. Вид интерференционной картины зависит от способа разделения пучка света на взаимно когерентные лучи, от их числа, их относительной интенсивности, размеров источника, спектрального состава света. Методы получения когерентных пучков в интерферометре очень разнообразны, поэтому существует большое число различных конструкций интерферометров. По числу интерферирующих пучков света оптические интерферометры можно разбить на многолучевые и двулучевые. Многолучевые интерферометры используются главным образом как спектрометры высокой разрешающей силы для исследования тонкой структуры спектральных линий и определения их формы, а двулучевые интерферометры являются в основном техническими приборами.
Интерферометр Майкельсона. Монохроматический свет от источника S падает под углом 45º на плоскопараллельную пластинку Р1. Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1(отражается от посеребренного слоя) и луч 2 (проходит через него). Луч 1 отражается от зеркала М1 и, возвращаясь обратно, вновь проходит через пластинку Р1 (луч 1´ ). Луч 2 идет к зеркалу М2, отражается от него, возвращается обратно и отражается от пластинки Р1(луч 2´ ). Так как первый из лучей проходит сквозь пластинку Р1 дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка Р2 ( точно такая же, как и Р1 , только не покрытая слоем серебра).
Лучи 1´ и 2´ когерентны; следовательно, будет наблюдаться интерференция, результата которой зависит от оптической разности хода луча 1 от точки О до зеркала М1 и луча 2 от точки О до зеркала М2. При перемещении одного из зеркал на расстояние λ˳ /4 и разность хода обоих лучей увеличится на λ˳ /2 и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного( порядка 10-7 м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении темп.(интерференционный дилатометр)).
Применение интерферометров очень многообразно. Они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающим летательные аппараты, и т.д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлении о пространстве и времени.
Билет№7