
- •Билет №1 Интерференция световых волн. Когерентность световых волн. Условие мах. И мин. Для интерференции света. Оптическая длина пути.
- •Опыт Юнга
- •Зеркала Френеля
- •Бипризма Френеля
- •Интерференция света в тонких пленках. Полосы равного наклона и равной толщины.
- •Билет №5 Кольца Ньютона. Способ их наблюдения. Радиусы колец.
- •Интерферометры. Интерферометр Майкельсона. Применение интерферометров.
- •Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- •Билет 8 Дифракция Френеля на круглом отверстии:
- •Билет №9 дифракция фраунгофера на одной щели.
- •Билет№10
- •Билет № 11 Дифракционная решетка как спектральный прибор. Угловая и линейная дисперсия. Разрешающая способность.
- •3. 7. Дисперсия и разрешающая сила спектрального прибора. @
- •Билет 13 Понятие о голографии. Получение и восстановление голографических снимков. Особенности голографического снимка.
- •Билет 14
- •Вопрос 18
- •Вопрос 19. Вращение плоскости поляризации света. Оптический активные вещества.
- •Вопрос 20 Магнитное вращение плоскости поляризации
- •Вопрос 21 Искусственная оптическая поляризация. Эффект Керра и Коттона- Мутона.
- •Вопрос 22 Поглощение света при прохождении через вещество. Механизм поглощения.
- •Вопрос 23 Рассеяние света в веществе.
- •Вопрос 24 Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.
- •Вопрос 25 Эффект Вавилова- Черенкова.
- •Вопрос 26
- •Впорс 27 Связь между лучеиспускательной и поглащательной способностями тел.
- •Вопрос 28 Распределение световой энергии в спектре абсолютно- черного тела. Серые тела.
- •Вопрос 29 Теория Релея и Джинса. Затруднения классической теории излучения.
- •Вопрос 30 Квантовая гипотеза Планка. Энергия светвого кванта. Функция распределения Планка.
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •Вопрос 34
- •Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 38
- •Вопрос 39
- •Вопрос 40
- •Вопрос 41
- •Вопрос 42
- •Вопрос 43
- •Вопрос 45 Частица в одномерной потенциальной яме. Квантование энергии.
- •Вопрос 46
- •Вопрос 47
- •Вопрос 48
- •Вопрос 49
- •Вопрос 50 Периодическая система химических элементов - естественная классификация химических элементов, являющаяся табличным выражением периодического закона д.И. Менделеева.
Вопрос 40
де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.
Согласно
де Бройлю, с каждым микрообъектом
связаны, с одной стороны, корпускулярные
характеристики – энергия E и импульс
p, а с другой стороны, волновые характеристики
– частота ν и длина волны λ.иКорпускулярные
и волновые характеристики микрообъектов
связаны такими же количественными
соотношениями, как у фотона
Гипотеза
де Бройля постулировала эти соотношения
для всех микрочастиц, в том числе и для
таких, которые обладают массой m. Любой
частице, обладающей импульсом,
сопоставлялся волновой процесс с длиной
волны λ = h / p. Для частиц, имеющих массу,
В нерелятивистском приближении (υ <<
c)
Гипотеза де Бройля основывалась на
соображениях симметрии свойств материи
и не имела в то время опытного подтверждения.
Первое экспериментальное подтверждение гипотезы де Бройля было получено физиками К. Девиссоном и Л. Джермером. Они обнаружили, что пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучения. В этих экспериментах кристалл играл роль естественной дифракционной решетки. По положению дифракционных максимумов была определена длина волны электронного пучка, которая оказалась в полном соответствии с формулой де Бройля.
Дж. Томсон получил новое подтверждение гипотезы де Бройля. В своих экспериментах Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота.На установленной за фольгой фотопластинке отчетливо наблюдались концентрические светлые и темные кольца, радиусы которых изменялись с изменением скорости электронов (т. е. длины волны) согласно де Бройлю.
Опыт Дж. Томсона был многократно повторен с неизменным результатом, в том числе при условиях, когда поток электронов был настолько слабым, что через прибор единовременно могла проходить только одна частица. Таким образом, было экспериментально доказано, что волновые свойства присущи не только большой совокупности электронов, но и каждому электрону в отдельности.
Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство материи. Следовательно, волновые свойства должны быть присущи и макроскопическим телам. Однако вследствие большой массы макроскопических тел их волновые свойства не могут быть обнаружены экспериментально.
Вопрос 41
Своеобразие движения микрочастиц, как оказалось, заключается также и в том, что ее траекторию нельзя характеризовать точными значениями координат и скорости (т.е. нельзя определить одновременно положение микрочастицы в пространстве и ее скорость с произвольной точностью). Немецкий ученый Гейзенберг в 1927г. установил, что неопределенности или погрешности измерения координаты Δх, Δy, Δz и импульса Δрх, Δрy, Δрz удовлетворяют соотношениям: Δх Δрх ≥ h, Δy Δрy ≥ h, Δz Δрz ≥ h. (1.6)
Подобное соотношение имеется и для неопределенности измерения времени состояния микросистемы Δt и ее энергии ΔЕ Δt ΔЕ≥h , (1.7)
все эти формулы называются соотношениями неопределенностей Гейзенберга.
Наличие этих соотношений объяснятся тем, что при измерении одного параметра микрочастицы, второй соответствующий параметр искажается измерительным прибором и чем точнее измеряется один, тем больше искажается второй. Это происходит и для макрообъектов, но вследствие их больших масс воздействие приборов оказывается несущественным.
Соотношения неопределенностей позволяют определить границы применимости понятий и законов классической механики к объектам, т.е. возможности одновременного использования понятий координаты и скорости при описании движения. Учитывая, что рх = mvx, можно получить Δх Δvх ≥ h/m, откуда следует, что чем больше масса частицы, тем меньше неопределенность ее координаты и скорости и, следовательно, с тем большей точностью можно применять к этой частице понятие траектории.
Представление
о двойственной корпускулярно-волновой
природе частиц вещества углубляется
еще тем, что на частицы вещества
переносится связь между полной энергией
частицы е и частотой v волн де Бройля:
(213.3)
Это свидетельствует о том, что соотношение между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фотонов, так и для любых других микрочастиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике.
Смысл соотношения неопределенностей заключается в том, что невозможно одновременное измерение дополнительных (по терминологии Н. Бора) величин, например, координаты и импульса микрообъекта. Всякая попытка увеличить точность измерения координаты приводит к потере информации об импульсе, и наоборот. Следует ясно понимать, что речь не идет о несовершенстве приборов для измерения. Ограничения, накладываемые соотношением неопределенностей, носят принципиальный характер, не зависящий от устройства приборов. Эти ограничения являются законом, действующим в микромире.