Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ChASTINA_I.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.71 Mб
Скачать

Розділ III.Многочлени над полем комплексних чисел і над полем дійсних чисел § 8. Многочлени над полем комплексних чисел. Алгебраїчна замкненість поля комплексних чисел.

Нехай - деякий многочлен над полем . Якщо , то існує розширення поля , в якому міститься деякий корінь многочлена .З цього твердження випливає, що для будь-якого многочлена степеня існує таке розширення поля , що можна подати в у вигляді добутку лінійних множників.

Поле називається полем розкладу многочлена , якщо розкладається в на лінійні множники. Поле , яке є полем розкладу будь-якого многочлена , називається алгебраїчно замкненим.

Теорема 1. Многочлен непарного степеня над полем дійсних чисел має принаймні один дійсний корінь.

Теорема 2. Кожний многочлен степеня з дійсними коефіцієнтами має принаймні один комплексний корінь.

Теорема 3. (Основна теорема теорії многочленів):

Довільний многочлен ненульового степеня з комплексними коефіцієнтами має хоча б один комплексний корінь.

Теорема 4. Кожний многочлен, степінь якого вища за одиницю, звідний у полі комплексних чисел.

Наслідок. Для того, щоб многочлен був незвідним у полі комплексних чисел, необхідно і достатньо, щоб його степінь дорівнював 1.

Теорема 5. Кожний многочлен -го степеня у полі комплексних чисел єдиним чином (з точністю до порядку множників) розкладається на лінійні множники у цьому полі:

,

де - корені, - старший коефіцієнт .

Терема 6. Многочлен -го степеня у полі комплексних чисел має точно коренів.

Очевидно, що всі корені многочлена над полем комплексних чисел належать цьому ж полю, тобто полем розкладу будь-якого многочлена з комплексними коефіцієнтами є поле С (поле комплексних чисел ). Тому поле комплексних чисел є алгебраїчно замкненим і для коренів многочлена у полі С є справедливими формули Вієта:

..........................................

Приклади розв’язування задач.

8.1. Знайти многочлен найменшого степеня, в якого число 2 - подвійний корінь, а – прості.

Розв’язання.

Могочлен , виходячи з умови, можна розкласти на незвідні множники:

8.2. Знайти суму кубів коренів многочлена

Розв’язання.

Нехай – корені многочлена . За теоремою Вієта маємо систему:

8.3. Знайти зведені многочлени, в яких корені задовольняють умову: , а є коренями многочлена .

Розв’язання.

Запишемо многочлен

.

За теоремою Вієта при умові, що - корені , маємо:

Отримаємо :

8.4. Розкласти на незвідні множники многочлен .

Розв’язання.

Знайдемо корені многочлена .

Тоді маємо, що

8.5. Знайти суму кубів коренів многочлена

Розв’язання.

За теоремою Вієта маємо:

Тоді

8.6. Корені многочлена утворюють арифметичну прогресію. Знайти цей многочлен і його корені, якщо

Розв’язання.

Нехай -корені многочлена . Так як вони утворюють арифметичну прогресію, то виконується така умова:

За теоремою Вієта маємо:

Складемо систему:

Розвязавши її отримаємо такі значення:

Отже,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]