- •Коррозия и защита металлов от коррозии Содержание
- •Раздел 1 Химическая коррозия металлов 5
- •2.13.Электрохимическая защита от коррозии 37
- •Раздел 3. Методы защиты..............................................................54
- •3.4.2. Методы нанесения металлических покрытий 65
- •Раздел 4. Коррозионная стойкость сплавов................................77
- •Коррозия и защита металлов от коррозии Введение
- •1. Что такое коррозия?
- •2. Коррозионная проблема _ Значение коррозионных исследований определяется 4 аспектами.
- •3. Структура металлов и ее влияние на коррозионные процессы
- •Раздел 1 Химическая коррозия металлов
- •1.1.Термодинамика химической коррозии металлов
- •1.2. Механизм газовой коррозии
- •1.3. Свойства пленок
- •Условие сплошности
- •1.4. Законы роста оксидных пленок во времени
- •1.5. Влияние внешних и внутренних факторов на скорость коррозии
- •1.5.1. Влияние температуры на скорость газовой коррозии
- •1.5.2. Состав газовой среды
- •1.5.3.. Давление газов
- •1.5.4. Режим нагрева
- •1.5.5. Состав сплава и пленки
- •1.6. Показатели коррозии
- •1.7.Оксидные пленки на поверхности железа
- •1.8.Газовая коррозия железа, стали, чугуна
- •1.8.1. Рост чугунов. Водородная коррозия. Карбонильная коррозия. Коррозия в среде хлора и хлороводорода.
- •1.8.2.Коррозия под действием продуктов сгорания топлива
- •При этом ухудшается пластичность стали
- •1.9.Методы защиты от газовой коррозии.
- •1.10.Классификация пленок на металлах по толщине
- •1.11.Теория жаростойкого легирования
- •Раздел 2 Электрохимическая коррозия металлов
- •2.1. Определение электрохим. Коррозии
- •2.2 Механизм электрохимической коррозии
- •2.3.Вычисление электродного потенциала e
- •2.4.Составление гальванического элемента и
- •2.5. Кинетика электрохимической коррозии
- •2.6.Диаграмма Пурбе.
- •2 .7. Условия возникновения коррозионного процесса
- •2.8.Поляризация. Деполяризация .
- •Анодная поляризация
- •Катодная поляризация
- •Катодная деполяризация.
- •А) Водородная деполяризация (перенапряжение водорода)
- •Б) Кислородная деполяризация (перенапряжение кислорода)
- •2.9. Поляризационные кривые
- •2.10. Пассивное состояние металлов и сплавов
- •2.11. Коррозионные диаграммы
- •2.12. Влияние внутренних и внешних факторов на скорость коррозии
- •2.12. 1 Влияние рН среды
- •2.12.2. Влияние температуры на скорость коррозии.
- •2.13.Электрохимическая защита от коррозии
- •2.14. Локальные виды коррозии и коррозионно-механические разрушения металлов.
- •2.14. 1. Локальные виды коррозии
- •2.15. Коррозия металлов в природных и технологических средах
- •2.15. 1. Атмосферная коррозия металлов
- •2.15. .2 Почвенная коррозия металлов
- •2.15. 3. Морская коррозия металлов
- •2.16. Влияние конструктивных факторов на развитие коррозионных разрушений машин и аппаратов
- •Раздел 3. Методы защиты
- •3.2. Замедлители ( ингибиторы) электрохимической
- •3.4. Металлические и неорганические покрытия
- •3.4.1. Защитные металлические покрытия
- •Классификация покрытий
- •Взаимосвязь покрытие - основа
- •Пористость покрытий
- •Электронанесение красок
- •Автофорез
- •3.6. Тонкослойные химические покрытия. Фосфатные и оксидные защитные пленки
- •3.6.1. Фосфатирование
- •3.6.2. Оксидирование
- •3.6.3. Пассивирование
- •3.6.4. Анодирование
- •Раздел 4. Коррозионная стойкость сплавов
- •4.1. Коррозия сплавов на основе железа
- •4.1.1. Коррозия углеродистых сталей
- •4.2.2. Медь и ее сплавы
- •Лабораторна робота №1 кінетика окиснення металів на повітрі
- •Оформлення результатів
- •Розділ іі. Електрохімічна корозія
- •Гравіметричний метод визначення швидкості корозії
- •Оформлення результатів
- •Розділ III. Засоби захисту металів від корозії Лабораторна робота № 6 захист металів від корозії за допомогою інгібіторів
1.8.Газовая коррозия железа, стали, чугуна
и других металлов и сплавов.
1.8.1. Рост чугунов. Водородная коррозия. Карбонильная коррозия. Коррозия в среде хлора и хлороводорода.
При нагревании выше 60O0C железо и углеродистые стали покрываются пленкой — окалиной, имеющей сложное строение. Толщина слоя различных оксидов зависит от температуры, времени коррозии и состава газовой среды.
В стали наряду с окислением железа, происходит взаимодействие карбида железа с кислородом воздуха и кислородсодержащими веществами:
Fe3C + О2 = 3Fe+ CO2
Fe3C+ CO2 = 3Fe+ 2CO
Fe3C + H2 O = 3 Fe + СО + H2
В результате поверхностный слой обедняется углеродом, что приводит к изменению структуры сплава и ухудшает его механические и антикоррозионные свойства.
Содержание примесей марганца, серы, фосфора не оказывает заметного влияния на коррозию стали.
В особый случай газовой коррозии чугунов («рост чугунов») выделяют высокотемпературные процессы селективного, внутреннего окисления. Образование окалины в этом случае протекает на границах зерен кристаллитов сталистой основы и на поверхности включений графита. Из-за большего объема образующихся оксидов компонентов чугуна размеры детали увеличиваются, а ее прочность снижается. Больше всего способствуют процессам «роста» чугуна тепловые удары.
Наличие кремния в составе чугунов увеличивает их склонность к «росту», а чугуны, легированные хромом и никелем, хорошо сопротивляются такому виду коррозионного разрушения. Существенное значение при прогнозировании жаростойкости чугунов имеет форма графитовых включений. При шаровидной форме вкраплений графита стойкость хромистых чугунов против газовой коррозии выше, чем у чугунов с пластинчатыми включениями графита.
Сталь и чугун обезуглероживаются также в среде водорода с образованием метана:
t,p
Fe3C + 2H2 = 3Fe + CH4
Этот вид газовой коррозии, называемый водородной, наблюдается при взаимодействии водорода с железоуглеродистыми сплавами при высоких температурах и давлениях, например в колоннах синтеза аммиака (процесс синтеза аммиака ведут при 450—55O0C и давлении 25—100 МПа). Для предупреждения обезуглероживания стали при высоких температурах применяют легированные стали. В качестве легирующих добавок вводят элементы, способные образовывать карбиды, более стойкие по отношению к водороду, чем цементит FезС.
Карбонильная коррозия — процесс разрушения металлов при взаимодействии их с оксидом углерода (II), который при высоких давлениях и температурах, как например, в процессах получения синтетических спиртов (метилового, бутилового и др.), может образовывать с металлами легко возгоняющиеся карбонилы:
Ме + п СО = Ме(СО)„
Для железа реакция идет с образованием пентакарбонила:
Fe + 5(CO) = Fe(CO)5
Пентакарбснил железа Fe(CO)5 — жидкость, кипящая при 1020C, пары ее полностью диссоциируют на Fe и СО при давлении 0,1 MПa и температуре выше 14O0C.
При карбонильной коррозии происходит разрушение поверхностного слоя металла и разрыхление его на глубину до 5 мм. В качестве предупредительных мер в состав стали вводят легирующие добавки. Однако необходимо заметить, что никель при взаимодействии с оксидом углерода (II) образует легкокипящий тетракарбонил никеля Ni(CO)4.
Не подвержены карбонильной коррозии хромистые стали с содержанием 30% Cr, хромоникелевые стали (23% Cr и 20% Ni) и марганцовистые бронзы при температуре до 70O0C и давлении до 35 MПa.
Коррозии под действием хлора и хлороводорода подвержены практически все металлы. Образующиеся в результате такого взаимодействия хлориды металлов типа MeCl2 или MeCl3 плавятся или разлагаются при повышении температуры.
Реакция взаимодействия Me + Cl2 = MeCI2 имеет экзотермический характер, и поскольку при этом скорость отвода теплоты может быть ниже cкоростb реакции, то металлы горят в атмосфере хлора. Вот почему этот вид коррозии принципиально отличается от других, протекающих в газовых средах (рис. 44).
Наиболее стойкие по отношению к хлору и хлороводороду никель, хромоникрлевые стали, свинец, чье взаимодействие с хлором не сопровождается экзотермическим эффектом, а образующиеся на их поверхности пленки обладают защитными свойствами.
