- •Функция распределения, свойства функции распределения, график функции распределения.
- •Определение плотности распределения.
- •Свойства плотности распределения.
- •Кто является основателями статистики как науки?
- •Назвать крупных представителей русской школы статистики.
- •Статистическая совокупность и ее свойства (признаки).
- •Статистическое наблюдение: этапы наблюдения, формы статистического наблюдения.
- •Ошибки статистического наблюдения: случайные, систематические, ошибки репрезентативности.
- •Статистическая таблица и ее заголовки.
- •Основные элементы статистической таблицы.
- •Виды статистической таблицы в зависимости от подлежащего.
- •13. Статистические графики: диаграммы, картограммы, картодиаграммы.
- •14. Средняя арифметическая величина, взвешенная арифметическая средняя.
- •15. Абсолютные показатели: индивидуальные, сводные, объемные.
- •16. Относительные показатели.
- •17. Свойства средней арифметической 1-3.
- •18. Свойства средней арифметической 4-6.
- •19. Существенные и несущественные факторы.
- •20. Вариация систематическая и случайная.
- •21. Общая вариация
- •22. Разбивка на группы показателя вариации в зависимости от характеризуемых ими особенностей.
- •23. Вариационный ряд
- •24.Формы вариационного ряда
- •25. Дискретный вариационный ряд – для каких случаев он строится.
- •26. Интервальный вариационный ряд и его виды.
- •27. Для каких случаев строится интервальный вариационный ряд.
- •28. Мода распределения.
- •29. Медиана распределения, формулы для вычисления медианы.
- •30. Главное свойство медианы.
- •31. Связь моды, медианы, средней арифметической для умеренно ассиметричных рядов
- •32. Вариационный размах
- •33. Среднее линейное отклонение
- •Среднее линейное отклонение простое:
- •34. Дисперсия: простая, взвешенная
- •35. Среднее квадратическое отклонение
- •36. Коэффициент осцилляции, линейный коэф. Вариации, коэф.Вариации.
- •37. Ассиметрия: левосторонняя, правосторонняя
- •38. Коэффициент эксцесса
- •39. Выборочное наблюдение
- •41. Генеральная совокупность. Повторный отбор. Бесповторный.
- •41. Ошибки репрезентативности: систематические, случайные.
- •42. Средняя ошибка выборки
- •43) Предельная ошибка выборки
- •44) Простая случайная выборка.
- •45) Границы генеральной средней (теорема Маркова).
- •46) Средняя ошибка для бесповторной выборки.
- •47) Формулы для определения необходимого объема простой случайной повторной и бесповторной выборки.
- •48) Систематическая ( механическая ) выборка.
- •49) Необходимый объем в случае систематической выборки.
- •50) Типическая (стратифицированная) выборка.
- •51.Число единиц для типической выборки пропорциональной объему типических групп.
- •52.Средняя из внутригрупповых дисперсий.
- •57.Средняя ошибка серийной выборки для случая: а) повторного отбора; б) бесповторного отбора.
- •58. Межгрупповая дисперсия.
- •59. Необходимый объем серийной выборки для случая: а) повторного отбора; б) бесповторного отбора.
- •60. Классификация рядов динамики.
- •Сопоставимость уровней ряда динамики.
- •62. Отчетный уровень; базисный уровень.
- •63 Абсолютный прирост: цепной, базисный.
- •Интенсивность изменения уровня ряда – коэффициент роста.
- •Темп прироста.
- •66 Абсолютное ускорение, относительное ускорение.
- •Средний уровень для интервального ряда:
- •Средний уровень моментного ряда динамики:
- •Средний абсолютный прирост.
- •70. Средний темп роста.
Сопоставимость уровней ряда динамики.
Условием сравнимости уровней интервального ряда является наличие равных интервалов, по которым даны уровни. Способы сопоставления уровней ряда:
1) каждый уровень динамического ряда сравнивается с одним и тем же предшествующим уровнем, где базисный уровень - начальный уровень динамического ряда или уровень, с которого начинается какой-то новый этап развития - это сравнение с постоянной базой. Полученные при этом показатели называются базисными;
2) каждый уровень динамического ряда сравнивается с непосредственно ему предшествующим - это сравнение с переменной базой. Полученные при этом показатели называются цепными
62. Отчетный уровень; базисный уровень.
Показатели анализа динамики могут определяться по постоянной и переменным базам сравнения. Здесь принято называть сравнимый уровень отчетным, а уровень, с которого производится сравнение, — базисным.
63 Абсолютный прирост: цепной, базисный.
Показатели динамики с постоянной базой (базисные показатели) - это показатели окончательного результата всех изменений в уровнях ряда от периода, к которому относится базисный уровень, до назначенного (/-того) периода.
Показатели динамики с переменной базой (цепные показатели) - это показатели интенсивности изменения уровня от периода к периоду (или от даты к дате) в пределах изучаемого промежутка времени.
Абсолютный
прирост
(
i)
– это разность между двумя уровнями
динамического ряда, которая показывает,
насколько данный уровень ряда превышает
уровень, принятый за базу сравнения.
Интенсивность изменения уровня ряда – коэффициент роста.
Для оценки интенсивности, т.е. относительного изменения уровня динамического ряда за какой-либо период времени, исчисляют темпы роста (снижения). Интенсивность изменения уровня оценивается отношением отчетного уровня к базисному. Показатель интенсивности изменения уровня ряда, выраженный в долях единицы, называется коэффициентом роста, а в процентах – темпом роста. Эти показатели интенсивности отличаются только единицами измерения. Коэффициент роста (снижения) показывает, во сколько раз сравниваемый уровень больше уровня, с которым производится сравнение (если этот коэффициент больше единицы) или какую часть (долю) уровня, с которым производится сравнение, составляет сравниваемый уровень (если он меньше единицы).
Темп прироста.
Темп прироста (сокращения) показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения.
66 Абсолютное ускорение, относительное ускорение.
Абсолютным ускорением в статистике называется разность между последующим и предыдущим абсолютными приростами (Д' = = Ду,- — Ay,-_i). Ускорение показывает, на сколько данная скорость больше (меньше) предыдущей. Таким образом, абсолютное ускорение есть скорость изменения показателя.
Относительным ускорением называется отношение абсолютного ускорения к абсолютному приросту, принятому за базу (Д' : Д>'г), т. относительное ускорение есть темп прироста абсолютного прироста.
