
- •Глава I случайные события и вероятности
- •§ 1.1. Случайные события. Классическое определение вероятности
- •2. Алгебра событий.
- •4. Применение элементов комбинаторики к нахождению вероятностей.
- •§ 1.2. Геометрическая вероятность. Статистическое и аксиоматическое определения вероятности
- •§ 1.3. Свойства вероятности
- •1. Теорема сложения вероятностей несовместимых событий
- •2. Теорема умножения вероятностей.
- •4. Формула полной вероятности.
- •§ 1.4. Случайные события в физике, химии, биологии
- •Глава 11
- •§ 2.1. Дискретные случайные величины
- •§ 2.2. Математическое ожидание дискретной случайной величины
- •2. Свойства математического ожидания дискретной случайной величины.
- •1. Математическое ожидание* постоянной величины с равно этой величине.
- •3. Математическое ожидание суммы двух случайных величин X и y равно сумме их математических ожиданий:
- •4. Математическое ожидание произведения двух независимых случайных величин X и y равно произведению их математических ожиданий:
- •5. Математическое ожидание разности двух случайных величин X и y равно разности их математических ожиданий:
- •§ 2.3. Дисперсия дискретной случайной величины
- •2. Свойства дисперсии дискретной случайной величины.
- •1. Дисперсия дискретной случайной величины X равна разности между математическим ожиданием квадрата величины X и квадратом ее математического ожидания:
- •3. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
- •4. Дисперсия суммы двух независимых случайных величин X и y равна сумме дисперсий этих величин:
- •5. Дисперсия разности двух независимых случайных величин X и y равна сумме их дисперсий:
- •3. Среднее квадратическое отклонение.
- •4. Понятие o моментах распределения.
- •2.8. Закон больших чисел
- •1.Неравенство Чебышева.
- •2.6 Математическое ожидания и дисперсия непрерывной случайной величины
- •2.7 Основные законы распределения непрерывных случайных величин
- •§ 2.9. Предельные теоремы теории вероятностей
- •Двумерные случайные величины
- •§ 3.1. Понятие о двумерной случайной величине
- •§ 3.2. Функция распределения двумерной случайной величины
- •Определение функции распределения двумерной случайной величины и ее свойства.
- •2. Вероятности попадания случайной точки в полуполосу и прямоугольник.
- •§ 3.3. Плотность вероятности двумерной случайной величины
- •Двумерная плотность вероятности и ее свойства.
- •2. Отыскание функции распределения двумерной случайной величины по известной двумерной плотности вероятности.
- •§ 3.4. Нахождение плотностей вероятности составляющих двумерной случайной величины
- •§ 3.5. Условные законы распределения составляющих двумерных дискретных и непрерывных случайных величин
- •1. Условные законы распределения составляющих двумерных дискретных случайных величин.
- •2. Условные законы распределения составляющих двумерных непрерывных случайных величин.
- •§ 3.6. Независимость случайных величин
- •§ 3.7. Элементы теории корреляции
- •2. Корреляционный момент и коэффициент корреляции.
- •1) Если X и y — независимые случайные величины, то коэффициент корреляции равен нулю.
- •2)Абсолютная величина коэффициента корреляции не превосходит единицы:
- •4. Нормальное распределение двумерной случайной величины.
- •Упражнения
- •Глава IV элементы математической статистики
- •§ 4.1. Генеральная совокупность и выборка
- •2. Статистическое распределение выборки. Полигон. Гистограмма.
- •§ 4.2. Оценки параметров генеральной совокупности по ее выборке
- •§ 4.3. Доверительные интервалы для параметров нормального распределения
- •3. Доверительный интервал для математического ожидания при неизвестном σ.
- •Дополнительные упражнения
§ 2.2. Математическое ожидание дискретной случайной величины
1. Понятие математического ожидания. Закон распределения полностью задает дискретную случайную величину. Однако часто встречаются случаи, когда закон распределения случайной величины неизвестен. В таких случаях случайную величину изучают по ее числовым характеристикам. Одной из таких характеристик является математическое ожидание.
Пусть некоторая дискретная случайная величина X с конечным числом своих значений задана законом распределения:
X |
x1 |
x2 |
… |
xn |
p |
р1 |
р2 |
… |
pn |
О п р е д е л е н и е. Математическим ожиданием М(Х) дискретной случайной величины X называется сумма произведений всех возможных значений величины X на соответствующие вероятности:
(2.1)
П р и м е р. Найдем математическое ожидание выигрыша X в примере из § 2.1 (п. 2).
Используя полученную там таблицу, имеем
М(Х) = 0 • 0,9889 + 1 • 0,01 + 100 • 0,001 + 1000 • 0,0001 = 0,21 (руб.).
Очевидно, М(Х) = 21 коп. есть справедливая стоимость одного лотерейного билета.
Т е о р е м а. Математическое ожидание дискретной случайной величины X приближенно равно среднему арифметическому всех ее значений (при достаточно большом числе испытаний).
Д о к а з а т е л ь с т в о. Предположим, что произведено п испытаний, в которых дискретная случайная величина X приняла значения x1, ..., хk соответственно т1, ..., тk раз, так что т1 + ... + тk = п. Тогда среднее арифметическое всех значений, принятых величиной X, выразится равенством
-
xср =
x1m1 + x2m2 + ... + xkmk
n
или
xср = x1 |
m1 |
+ x2 |
m2 |
+ ... + xk |
mk |
n |
n |
n |
Так как коэффициент тi/п является относительной частотой события «величина Х приняла значение хi» (i=1, 2, ..., k), то
xср = x1p1* + x2p2* +... + xkpk*.
Из
статистического определения вероятности
следует, что при достаточно большом
числе испытаний pi*
pi
(i
=
1, 2, ..., k).
Поэтому
xср x1p1 + x2p2 + ... + xkpk,
или
xср М(Х).
Таким образом, математическое ожидание случайной величины можно приближенно считать ее средним значением, что и делают на практике.
Обратимся теперь к механической интерпретации математического ожидания дискретной случайной величины X. Пусть на оси абсцисс расположены точки с абсциссами х1, х2, ..., хn, в которых сосредоточены соответственно массы р1, р2, .., pn, причем р1 + р2 + ...+ pn = 1. Тогда математическое ожидание М(Х), определяемое формулой (2.1), есть ни что иное, как абсцисса центра масс данной системы материальных точек.